Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem1 Structured version   Visualization version   GIF version

Theorem opnvonmbllem1 42934
Description: The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem1.i 𝑖𝜑
opnvonmbllem1.x (𝜑𝑋𝑉)
opnvonmbllem1.c (𝜑𝐶:𝑋⟶ℚ)
opnvonmbllem1.d (𝜑𝐷:𝑋⟶ℚ)
opnvonmbllem1.s (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐵)
opnvonmbllem1.g (𝜑𝐵𝐺)
opnvonmbllem1.y (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
opnvonmbllem1.k 𝐾 = { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
opnvonmbllem1.h 𝐻 = (𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
Assertion
Ref Expression
opnvonmbllem1 (𝜑 → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
Distinct variable groups:   ,𝐺   ,𝐻   ,𝑋,𝑖   ,𝑌
Allowed substitution hints:   𝜑(,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝐷(,𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝐾(,𝑖)   𝑉(,𝑖)   𝑌(𝑖)

Proof of Theorem opnvonmbllem1
StepHypRef Expression
1 opnvonmbllem1.i . . . . . 6 𝑖𝜑
2 opnvonmbllem1.c . . . . . . . 8 (𝜑𝐶:𝑋⟶ℚ)
32ffvelrnda 6851 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℚ)
4 opnvonmbllem1.d . . . . . . . 8 (𝜑𝐷:𝑋⟶ℚ)
54ffvelrnda 6851 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℚ)
6 opelxpi 5592 . . . . . . 7 (((𝐶𝑖) ∈ ℚ ∧ (𝐷𝑖) ∈ ℚ) → ⟨(𝐶𝑖), (𝐷𝑖)⟩ ∈ (ℚ × ℚ))
73, 5, 6syl2anc 586 . . . . . 6 ((𝜑𝑖𝑋) → ⟨(𝐶𝑖), (𝐷𝑖)⟩ ∈ (ℚ × ℚ))
8 opnvonmbllem1.h . . . . . 6 𝐻 = (𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
91, 7, 8fmptdf 6881 . . . . 5 (𝜑𝐻:𝑋⟶(ℚ × ℚ))
10 qex 12361 . . . . . . . . 9 ℚ ∈ V
1110, 10xpex 7476 . . . . . . . 8 (ℚ × ℚ) ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → (ℚ × ℚ) ∈ V)
13 opnvonmbllem1.x . . . . . . 7 (𝜑𝑋𝑉)
1412, 13jca 514 . . . . . 6 (𝜑 → ((ℚ × ℚ) ∈ V ∧ 𝑋𝑉))
15 elmapg 8419 . . . . . 6 (((ℚ × ℚ) ∈ V ∧ 𝑋𝑉) → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ)))
1614, 15syl 17 . . . . 5 (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ)))
179, 16mpbird 259 . . . 4 (𝜑𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋))
181, 8hoi2toco 42909 . . . . 5 (𝜑X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) = X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
19 opnvonmbllem1.s . . . . . 6 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐵)
20 opnvonmbllem1.g . . . . . 6 (𝜑𝐵𝐺)
2119, 20sstrd 3977 . . . . 5 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐺)
2218, 21eqsstrd 4005 . . . 4 (𝜑X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)
2317, 22jca 514 . . 3 (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
24 nfcv 2977 . . . . . . 7 𝑖
25 nfmpt1 5164 . . . . . . . 8 𝑖(𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
268, 25nfcxfr 2975 . . . . . . 7 𝑖𝐻
2724, 26nfeq 2991 . . . . . 6 𝑖 = 𝐻
28 coeq2 5729 . . . . . . . 8 ( = 𝐻 → ([,) ∘ ) = ([,) ∘ 𝐻))
2928fveq1d 6672 . . . . . . 7 ( = 𝐻 → (([,) ∘ )‘𝑖) = (([,) ∘ 𝐻)‘𝑖))
3029adantr 483 . . . . . 6 (( = 𝐻𝑖𝑋) → (([,) ∘ )‘𝑖) = (([,) ∘ 𝐻)‘𝑖))
3127, 30ixpeq2d 41350 . . . . 5 ( = 𝐻X𝑖𝑋 (([,) ∘ )‘𝑖) = X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖))
3231sseq1d 3998 . . . 4 ( = 𝐻 → (X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
33 opnvonmbllem1.k . . . 4 𝐾 = { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
3432, 33elrab2 3683 . . 3 (𝐻𝐾 ↔ (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
3523, 34sylibr 236 . 2 (𝜑𝐻𝐾)
36 opnvonmbllem1.y . . 3 (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
3736, 18eleqtrrd 2916 . 2 (𝜑𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖))
38 nfv 1915 . . 3 𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)
39 nfcv 2977 . . 3 𝐻
40 nfrab1 3384 . . . 4 { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
4133, 40nfcxfr 2975 . . 3 𝐾
4231eleq2d 2898 . . 3 ( = 𝐻 → (𝑌X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ 𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)))
4338, 39, 41, 42rspcef 41354 . 2 ((𝐻𝐾𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)) → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
4435, 37, 43syl2anc 586 1 (𝜑 → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wnf 1784  wcel 2114  wrex 3139  {crab 3142  Vcvv 3494  wss 3936  cop 4573  cmpt 5146   × cxp 5553  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  Xcixp 8461  cq 12349  [,)cico 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-z 11983  df-q 12350
This theorem is referenced by:  opnvonmbllem2  42935
  Copyright terms: Public domain W3C validator