![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprsubrg | Structured version Visualization version GIF version |
Description: Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.) |
Ref | Expression |
---|---|
opprsubrg.o | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprsubrg | ⊢ (SubRing‘𝑅) = (SubRing‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgrcl 18985 | . . 3 ⊢ (𝑥 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
2 | subrgrcl 18985 | . . . 4 ⊢ (𝑥 ∈ (SubRing‘𝑂) → 𝑂 ∈ Ring) | |
3 | opprsubrg.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | 3 | opprringb 18830 | . . . 4 ⊢ (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring) |
5 | 2, 4 | sylibr 224 | . . 3 ⊢ (𝑥 ∈ (SubRing‘𝑂) → 𝑅 ∈ Ring) |
6 | 3 | opprsubg 18834 | . . . . . . 7 ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
8 | 7 | eleq2d 2823 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
9 | ralcom 3234 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) | |
10 | eqid 2758 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
11 | eqid 2758 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | eqid 2758 | . . . . . . . . . 10 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
13 | 10, 11, 3, 12 | opprmul 18824 | . . . . . . . . 9 ⊢ (𝑧(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑧) |
14 | 13 | eleq1i 2828 | . . . . . . . 8 ⊢ ((𝑧(.r‘𝑂)𝑦) ∈ 𝑥 ↔ (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) |
15 | 14 | 2ralbii 3117 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) |
16 | 9, 15 | bitr4i 267 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥) |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥)) |
18 | 8, 17 | 3anbi13d 1548 | . . . 4 ⊢ (𝑅 ∈ Ring → ((𝑥 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥))) |
19 | eqid 2758 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
20 | 10, 19, 11 | issubrg2 19000 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥))) |
21 | 3, 10 | opprbas 18827 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑂) |
22 | 3, 19 | oppr1 18832 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑂) |
23 | 21, 22, 12 | issubrg2 19000 | . . . . 5 ⊢ (𝑂 ∈ Ring → (𝑥 ∈ (SubRing‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥))) |
24 | 4, 23 | sylbi 207 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥))) |
25 | 18, 20, 24 | 3bitr4d 300 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑅) ↔ 𝑥 ∈ (SubRing‘𝑂))) |
26 | 1, 5, 25 | pm5.21nii 367 | . 2 ⊢ (𝑥 ∈ (SubRing‘𝑅) ↔ 𝑥 ∈ (SubRing‘𝑂)) |
27 | 26 | eqriv 2755 | 1 ⊢ (SubRing‘𝑅) = (SubRing‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ w3a 1072 = wceq 1630 ∈ wcel 2137 ∀wral 3048 ‘cfv 6047 (class class class)co 6811 Basecbs 16057 .rcmulr 16142 SubGrpcsubg 17787 1rcur 18699 Ringcrg 18745 opprcoppr 18820 SubRingcsubrg 18976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-tpos 7519 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-2 11269 df-3 11270 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16154 df-mulr 16155 df-0g 16302 df-mgm 17441 df-sgrp 17483 df-mnd 17494 df-grp 17624 df-subg 17790 df-mgp 18688 df-ur 18700 df-ring 18747 df-oppr 18821 df-subrg 18978 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |