Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppr1 Structured version   Visualization version   GIF version

Theorem oppr1 18854
 Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
oppr1.2 1 = (1r𝑅)
Assertion
Ref Expression
oppr1 1 = (1r𝑂)

Proof of Theorem oppr1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2760 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
3 opprbas.1 . . . . . . . . 9 𝑂 = (oppr𝑅)
4 eqid 2760 . . . . . . . . 9 (.r𝑂) = (.r𝑂)
51, 2, 3, 4opprmul 18846 . . . . . . . 8 (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥)
65eqeq1i 2765 . . . . . . 7 ((𝑥(.r𝑂)𝑦) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦)
71, 2, 3, 4opprmul 18846 . . . . . . . 8 (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦)
87eqeq1i 2765 . . . . . . 7 ((𝑦(.r𝑂)𝑥) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦)
96, 8anbi12ci 736 . . . . . 6 (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
109ralbii 3118 . . . . 5 (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))
1110anbi2i 732 . . . 4 ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
1211iotabii 6034 . . 3 (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
13 eqid 2760 . . . . 5 (mulGrp‘𝑂) = (mulGrp‘𝑂)
143, 1opprbas 18849 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
1513, 14mgpbas 18715 . . . 4 (Base‘𝑅) = (Base‘(mulGrp‘𝑂))
1613, 4mgpplusg 18713 . . . 4 (.r𝑂) = (+g‘(mulGrp‘𝑂))
17 eqid 2760 . . . 4 (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑂))
1815, 16, 17grpidval 17481 . . 3 (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)))
19 eqid 2760 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2019, 1mgpbas 18715 . . . 4 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2119, 2mgpplusg 18713 . . . 4 (.r𝑅) = (+g‘(mulGrp‘𝑅))
22 eqid 2760 . . . 4 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
2320, 21, 22grpidval 17481 . . 3 (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2412, 18, 233eqtr4i 2792 . 2 (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑅))
25 eqid 2760 . . 3 (1r𝑂) = (1r𝑂)
2613, 25ringidval 18723 . 2 (1r𝑂) = (0g‘(mulGrp‘𝑂))
27 oppr1.2 . . 3 1 = (1r𝑅)
2819, 27ringidval 18723 . 2 1 = (0g‘(mulGrp‘𝑅))
2924, 26, 283eqtr4ri 2793 1 1 = (1r𝑂)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ℩cio 6010  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  .rcmulr 16164  0gc0g 16322  mulGrpcmgp 18709  1rcur 18721  opprcoppr 18842 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-plusg 16176  df-mulr 16177  df-0g 16324  df-mgp 18710  df-ur 18722  df-oppr 18843 This theorem is referenced by:  opprunit  18881  isdrngrd  18995  opprsubrg  19023  srng1  19081  issrngd  19083  fidomndrng  19529  rhmopp  30149  ldual1  34956  lduallmodlem  34960  ldualvsub  34963  lcd1  37418  lcdvsub  37426
 Copyright terms: Public domain W3C validator