![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pell14qrdivcl | Structured version Visualization version GIF version |
Description: Positive Pell solutions are closed under division. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
Ref | Expression |
---|---|
pell14qrdivcl | ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐵) ∈ (Pell14QR‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pell14qrre 37921 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 10258 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ) |
3 | 2 | 3adant3 1127 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ) |
4 | pell14qrre 37921 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → 𝐵 ∈ ℝ) | |
5 | 4 | recnd 10258 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → 𝐵 ∈ ℂ) |
6 | 5 | 3adant2 1126 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → 𝐵 ∈ ℂ) |
7 | pell14qrne0 37922 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → 𝐵 ≠ 0) | |
8 | 7 | 3adant2 1126 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → 𝐵 ≠ 0) |
9 | 3, 6, 8 | divrecd 10994 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
10 | pell14qrreccl 37928 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (1 / 𝐵) ∈ (Pell14QR‘𝐷)) | |
11 | 10 | 3adant2 1126 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (1 / 𝐵) ∈ (Pell14QR‘𝐷)) |
12 | pell14qrmulcl 37927 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 / 𝐵) ∈ (Pell14QR‘𝐷)) → (𝐴 · (1 / 𝐵)) ∈ (Pell14QR‘𝐷)) | |
13 | 11, 12 | syld3an3 1516 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 · (1 / 𝐵)) ∈ (Pell14QR‘𝐷)) |
14 | 9, 13 | eqeltrd 2837 | 1 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐵) ∈ (Pell14QR‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2137 ≠ wne 2930 ∖ cdif 3710 ‘cfv 6047 (class class class)co 6811 ℂcc 10124 0cc0 10126 1c1 10127 · cmul 10131 / cdiv 10874 ℕcn 11210 ◻NNcsquarenn 37900 Pell14QRcpell14qr 37903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 ax-pre-sup 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-sup 8511 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-div 10875 df-nn 11211 df-2 11269 df-3 11270 df-n0 11483 df-z 11568 df-uz 11878 df-rp 12024 df-seq 12994 df-exp 13053 df-cj 14036 df-re 14037 df-im 14038 df-sqrt 14172 df-abs 14173 df-pell14qr 37907 df-pell1234qr 37908 |
This theorem is referenced by: pell14qrexpclnn0 37930 pellfundex 37950 |
Copyright terms: Public domain | W3C validator |