Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmat1opsc Structured version   Visualization version   GIF version

Theorem pmat1opsc 20426
 Description: The identity polynomial matrix over a ring represented as operation with "lifted scalars". (Contributed by AV, 16-Nov-2019.)
Hypotheses
Ref Expression
pmat0opsc.p 𝑃 = (Poly1𝑅)
pmat0opsc.c 𝐶 = (𝑁 Mat 𝑃)
pmat0opsc.a 𝐴 = (algSc‘𝑃)
pmat0opsc.z 0 = (0g𝑅)
pmat1opsc.o 1 = (1r𝑅)
Assertion
Ref Expression
pmat1opsc ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝐴1 ), (𝐴0 ))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝐶,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   1 (𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem pmat1opsc
StepHypRef Expression
1 pmat0opsc.p . . 3 𝑃 = (Poly1𝑅)
2 pmat0opsc.c . . 3 𝐶 = (𝑁 Mat 𝑃)
3 eqid 2621 . . 3 (0g𝑃) = (0g𝑃)
4 eqid 2621 . . 3 (1r𝑃) = (1r𝑃)
51, 2, 3, 4pmat1op 20423 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))))
6 pmat0opsc.a . . . . . . 7 𝐴 = (algSc‘𝑃)
7 pmat1opsc.o . . . . . . 7 1 = (1r𝑅)
81, 6, 7, 4ply1scl1 19584 . . . . . 6 (𝑅 ∈ Ring → (𝐴1 ) = (1r𝑃))
98eqcomd 2627 . . . . 5 (𝑅 ∈ Ring → (1r𝑃) = (𝐴1 ))
10 pmat0opsc.z . . . . . . 7 0 = (0g𝑅)
111, 6, 10, 3ply1scl0 19582 . . . . . 6 (𝑅 ∈ Ring → (𝐴0 ) = (0g𝑃))
1211eqcomd 2627 . . . . 5 (𝑅 ∈ Ring → (0g𝑃) = (𝐴0 ))
139, 12ifeq12d 4080 . . . 4 (𝑅 ∈ Ring → if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)) = if(𝑖 = 𝑗, (𝐴1 ), (𝐴0 )))
1413adantl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)) = if(𝑖 = 𝑗, (𝐴1 ), (𝐴0 )))
1514mpt2eq3dv 6677 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑃), (0g𝑃))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝐴1 ), (𝐴0 ))))
165, 15eqtrd 2655 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝐴1 ), (𝐴0 ))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ifcif 4060  ‘cfv 5849  (class class class)co 6607   ↦ cmpt2 6609  Fincfn 7902  0gc0g 16024  1rcur 18425  Ringcrg 18471  algSccascl 19233  Poly1cpl1 19469   Mat cmat 20135 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-ot 4159  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-ofr 6854  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-sup 8295  df-oi 8362  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-fz 12272  df-fzo 12410  df-seq 12745  df-hash 13061  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-hom 15890  df-cco 15891  df-0g 16026  df-gsum 16027  df-prds 16032  df-pws 16034  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-submnd 17260  df-grp 17349  df-minusg 17350  df-sbg 17351  df-mulg 17465  df-subg 17515  df-ghm 17582  df-cntz 17674  df-cmn 18119  df-abl 18120  df-mgp 18414  df-ur 18426  df-ring 18473  df-subrg 18702  df-lmod 18789  df-lss 18855  df-sra 19094  df-rgmod 19095  df-ascl 19236  df-psr 19278  df-mpl 19280  df-opsr 19282  df-psr1 19472  df-ply1 19474  df-dsmm 19998  df-frlm 20013  df-mamu 20112  df-mat 20136 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator