Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsplusgfval Structured version   Visualization version   GIF version

Theorem prdsplusgfval 16115
 Description: Value of a structure product sum at a single coordinate. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsplusgval.p + = (+g𝑌)
prdsplusgfval.j (𝜑𝐽𝐼)
Assertion
Ref Expression
prdsplusgfval (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))

Proof of Theorem prdsplusgfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . . 4 𝑌 = (𝑆Xs𝑅)
2 prdsbasmpt.b . . . 4 𝐵 = (Base‘𝑌)
3 prdsbasmpt.s . . . 4 (𝜑𝑆𝑉)
4 prdsbasmpt.i . . . 4 (𝜑𝐼𝑊)
5 prdsbasmpt.r . . . 4 (𝜑𝑅 Fn 𝐼)
6 prdsplusgval.f . . . 4 (𝜑𝐹𝐵)
7 prdsplusgval.g . . . 4 (𝜑𝐺𝐵)
8 prdsplusgval.p . . . 4 + = (+g𝑌)
91, 2, 3, 4, 5, 6, 7, 8prdsplusgval 16114 . . 3 (𝜑 → (𝐹 + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))))
109fveq1d 6180 . 2 (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))‘𝐽))
11 prdsplusgfval.j . . 3 (𝜑𝐽𝐼)
12 fveq2 6178 . . . . . 6 (𝑥 = 𝐽 → (𝑅𝑥) = (𝑅𝐽))
1312fveq2d 6182 . . . . 5 (𝑥 = 𝐽 → (+g‘(𝑅𝑥)) = (+g‘(𝑅𝐽)))
14 fveq2 6178 . . . . 5 (𝑥 = 𝐽 → (𝐹𝑥) = (𝐹𝐽))
15 fveq2 6178 . . . . 5 (𝑥 = 𝐽 → (𝐺𝑥) = (𝐺𝐽))
1613, 14, 15oveq123d 6656 . . . 4 (𝑥 = 𝐽 → ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
17 eqid 2620 . . . 4 (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))
18 ovex 6663 . . . 4 ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)) ∈ V
1916, 17, 18fvmpt 6269 . . 3 (𝐽𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
2011, 19syl 17 . 2 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
2110, 20eqtrd 2654 1 (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1481   ∈ wcel 1988   ↦ cmpt 4720   Fn wfn 5871  ‘cfv 5876  (class class class)co 6635  Basecbs 15838  +gcplusg 15922  Xscprds 16087 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-fz 12312  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-plusg 15935  df-mulr 15936  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-hom 15947  df-cco 15948  df-prds 16089 This theorem is referenced by:  prdsmndd  17304  prdspjmhm  17348  prdsringd  18593  prdslmodd  18950  dsmmacl  20066
 Copyright terms: Public domain W3C validator