MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmndd Structured version   Visualization version   GIF version

Theorem prdsmndd 17944
Description: The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsmndd.y 𝑌 = (𝑆Xs𝑅)
prdsmndd.i (𝜑𝐼𝑊)
prdsmndd.s (𝜑𝑆𝑉)
prdsmndd.r (𝜑𝑅:𝐼⟶Mnd)
Assertion
Ref Expression
prdsmndd (𝜑𝑌 ∈ Mnd)

Proof of Theorem prdsmndd
Dummy variables 𝑎 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2822 . 2 (𝜑 → (Base‘𝑌) = (Base‘𝑌))
2 eqidd 2822 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
3 prdsmndd.y . . . 4 𝑌 = (𝑆Xs𝑅)
4 eqid 2821 . . . 4 (Base‘𝑌) = (Base‘𝑌)
5 eqid 2821 . . . 4 (+g𝑌) = (+g𝑌)
6 prdsmndd.s . . . . . 6 (𝜑𝑆𝑉)
76elexd 3514 . . . . 5 (𝜑𝑆 ∈ V)
87adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑆 ∈ V)
9 prdsmndd.i . . . . . 6 (𝜑𝐼𝑊)
109elexd 3514 . . . . 5 (𝜑𝐼 ∈ V)
1110adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
12 prdsmndd.r . . . . 5 (𝜑𝑅:𝐼⟶Mnd)
1312adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Mnd)
14 simprl 769 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑌))
15 simprr 771 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌))
163, 4, 5, 8, 11, 13, 14, 15prdsplusgcl 17942 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (𝑎(+g𝑌)𝑏) ∈ (Base‘𝑌))
17163impb 1111 . 2 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)𝑏) ∈ (Base‘𝑌))
1812ffvelrnda 6851 . . . . . . 7 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
1918adantlr 713 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
207ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑆 ∈ V)
2110ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝐼 ∈ V)
2212ffnd 6515 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
2322ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
24 simplr1 1211 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘𝑌))
25 simpr 487 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑦𝐼)
263, 4, 20, 21, 23, 24, 25prdsbasprj 16745 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎𝑦) ∈ (Base‘(𝑅𝑦)))
27 simplr2 1212 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑏 ∈ (Base‘𝑌))
283, 4, 20, 21, 23, 27, 25prdsbasprj 16745 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑏𝑦) ∈ (Base‘(𝑅𝑦)))
29 simplr3 1213 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑐 ∈ (Base‘𝑌))
303, 4, 20, 21, 23, 29, 25prdsbasprj 16745 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))
31 eqid 2821 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
32 eqid 2821 . . . . . . 7 (+g‘(𝑅𝑦)) = (+g‘(𝑅𝑦))
3331, 32mndass 17920 . . . . . 6 (((𝑅𝑦) ∈ Mnd ∧ ((𝑎𝑦) ∈ (Base‘(𝑅𝑦)) ∧ (𝑏𝑦) ∈ (Base‘(𝑅𝑦)) ∧ (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))) → (((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
3419, 26, 28, 30, 33syl13anc 1368 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
353, 4, 20, 21, 23, 24, 27, 5, 25prdsplusgfval 16747 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(+g𝑌)𝑏)‘𝑦) = ((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦)))
3635oveq1d 7171 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦)) = (((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑐𝑦)))
373, 4, 20, 21, 23, 27, 29, 5, 25prdsplusgfval 16747 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑏(+g𝑌)𝑐)‘𝑦) = ((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦)))
3837oveq2d 7172 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
3934, 36, 383eqtr4d 2866 . . . 4 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦)))
4039mpteq2dva 5161 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦𝐼 ↦ (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))) = (𝑦𝐼 ↦ ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦))))
417adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ V)
4210adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
4322adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼)
44163adantr3 1167 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(+g𝑌)𝑏) ∈ (Base‘𝑌))
45 simpr3 1192 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌))
463, 4, 41, 42, 43, 44, 45, 5prdsplusgval 16746 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g𝑌)𝑏)(+g𝑌)𝑐) = (𝑦𝐼 ↦ (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
47 simpr1 1190 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑌))
4812adantr 483 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Mnd)
49 simpr2 1191 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌))
503, 4, 5, 41, 42, 48, 49, 45prdsplusgcl 17942 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑏(+g𝑌)𝑐) ∈ (Base‘𝑌))
513, 4, 41, 42, 43, 47, 50, 5prdsplusgval 16746 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(+g𝑌)(𝑏(+g𝑌)𝑐)) = (𝑦𝐼 ↦ ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦))))
5240, 46, 513eqtr4d 2866 . 2 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g𝑌)𝑏)(+g𝑌)𝑐) = (𝑎(+g𝑌)(𝑏(+g𝑌)𝑐)))
53 eqid 2821 . . . 4 (0g𝑅) = (0g𝑅)
543, 4, 5, 7, 10, 12, 53prdsidlem 17943 . . 3 (𝜑 → ((0g𝑅) ∈ (Base‘𝑌) ∧ ∀𝑎 ∈ (Base‘𝑌)(((0g𝑅)(+g𝑌)𝑎) = 𝑎 ∧ (𝑎(+g𝑌)(0g𝑅)) = 𝑎)))
5554simpld 497 . 2 (𝜑 → (0g𝑅) ∈ (Base‘𝑌))
5654simprd 498 . . . 4 (𝜑 → ∀𝑎 ∈ (Base‘𝑌)(((0g𝑅)(+g𝑌)𝑎) = 𝑎 ∧ (𝑎(+g𝑌)(0g𝑅)) = 𝑎))
5756r19.21bi 3208 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌)) → (((0g𝑅)(+g𝑌)𝑎) = 𝑎 ∧ (𝑎(+g𝑌)(0g𝑅)) = 𝑎))
5857simpld 497 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → ((0g𝑅)(+g𝑌)𝑎) = 𝑎)
5957simprd 498 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)(0g𝑅)) = 𝑎)
601, 2, 17, 52, 55, 58, 59ismndd 17933 1 (𝜑𝑌 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cmpt 5146  ccom 5559   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Xscprds 16719  Mndcmnd 17911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-prds 16721  df-mgm 17852  df-sgrp 17901  df-mnd 17912
This theorem is referenced by:  prds0g  17945  pwsmnd  17946  xpsmnd  17951  prdspjmhm  17993  prdsgrpd  18209  prdscmnd  18981  prdsringd  19362  dsmm0cl  20884  prdstmdd  22732
  Copyright terms: Public domain W3C validator