MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbag0 Structured version   Visualization version   GIF version

Theorem psrbag0 19416
Description: The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypothesis
Ref Expression
psrbag0.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbag0 (𝐼𝑉 → (𝐼 × {0}) ∈ 𝐷)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbag0
StepHypRef Expression
1 0nn0 11254 . . . 4 0 ∈ ℕ0
21fconst6 6054 . . 3 (𝐼 × {0}):𝐼⟶ℕ0
3 c0ex 9981 . . . . . 6 0 ∈ V
43fconst 6050 . . . . 5 (𝐼 × {0}):𝐼⟶{0}
5 incom 3785 . . . . . 6 ({0} ∩ ℕ) = (ℕ ∩ {0})
6 0nnn 10999 . . . . . . 7 ¬ 0 ∈ ℕ
7 disjsn 4218 . . . . . . 7 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
86, 7mpbir 221 . . . . . 6 (ℕ ∩ {0}) = ∅
95, 8eqtri 2643 . . . . 5 ({0} ∩ ℕ) = ∅
10 fimacnvdisj 6042 . . . . 5 (((𝐼 × {0}):𝐼⟶{0} ∧ ({0} ∩ ℕ) = ∅) → ((𝐼 × {0}) “ ℕ) = ∅)
114, 9, 10mp2an 707 . . . 4 ((𝐼 × {0}) “ ℕ) = ∅
12 0fin 8135 . . . 4 ∅ ∈ Fin
1311, 12eqeltri 2694 . . 3 ((𝐼 × {0}) “ ℕ) ∈ Fin
142, 13pm3.2i 471 . 2 ((𝐼 × {0}):𝐼⟶ℕ0 ∧ ((𝐼 × {0}) “ ℕ) ∈ Fin)
15 psrbag0.d . . 3 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1615psrbag 19286 . 2 (𝐼𝑉 → ((𝐼 × {0}) ∈ 𝐷 ↔ ((𝐼 × {0}):𝐼⟶ℕ0 ∧ ((𝐼 × {0}) “ ℕ) ∈ Fin)))
1714, 16mpbiri 248 1 (𝐼𝑉 → (𝐼 × {0}) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  {crab 2911  cin 3555  c0 3893  {csn 4150   × cxp 5074  ccnv 5075  cima 5079  wf 5845  (class class class)co 6607  𝑚 cmap 7805  Fincfn 7902  0cc0 9883  cn 10967  0cn0 11239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-n0 11240
This theorem is referenced by:  mplascl  19418  subrgasclcl  19421  evlslem1  19437  tdeglem4  23731  mdegle0  23748
  Copyright terms: Public domain W3C validator