MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst6 Structured version   Visualization version   GIF version

Theorem fconst6 5993
Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
fconst6.1 𝐵𝐶
Assertion
Ref Expression
fconst6 (𝐴 × {𝐵}):𝐴𝐶

Proof of Theorem fconst6
StepHypRef Expression
1 fconst6.1 . 2 𝐵𝐶
2 fconst6g 5992 . 2 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
31, 2ax-mp 5 1 (𝐴 × {𝐵}):𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  wcel 1976  {csn 4124   × cxp 5026  wf 5786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-fun 5792  df-fn 5793  df-f 5794
This theorem is referenced by:  ramz  15513  psrlidm  19170  psrbag0  19261  00ply1bas  19377  ply1plusgfvi  19379  mbfpos  23141  i1f0  23177  axlowdimlem1  25540  axlowdimlem7  25546  axlowdim1  25557  hlim0  27282  0cnfn  28029  0lnfn  28034  noxpsgn  30868  poimirlem29  32411  poimirlem30  32412  poimirlem31  32413  poimir  32415  broucube  32416  expgrowth  37359
  Copyright terms: Public domain W3C validator