MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem1 Structured version   Visualization version   GIF version

Theorem evlslem1 19434
Description: Lemma for evlseu 19435, give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 26-Jul-2019.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.k 𝐾 = (Base‘𝑅)
evlslem1.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
evlslem1.i (𝜑𝐼 ∈ V)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem1.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
evlslem1 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸𝐴) = 𝐹 ∧ (𝐸𝑉) = 𝐺))
Distinct variable groups:   𝑝,𝑏,𝐵   𝐶,𝑏,𝑝   𝜑,𝑏,𝑝   𝐹,𝑏,𝑝   𝐾,𝑏   𝑇,𝑏,𝑝   𝐷,𝑏,𝑝   ,𝑏,𝐼,𝑝   𝑅,𝑏,,𝑝   𝐺,𝑏,𝑝   𝑃,𝑏,𝑝   𝑆,𝑏,𝑝   · ,𝑏,𝑝   ,𝑏,𝑝
Allowed substitution hints:   𝜑()   𝐴(,𝑝,𝑏)   𝐵()   𝐶()   𝐷()   𝑃()   𝑆()   𝑇()   · ()   𝐸(,𝑝,𝑏)   ()   𝐹()   𝐺()   𝐾(,𝑝)   𝑉(,𝑝,𝑏)

Proof of Theorem evlslem1
Dummy variables 𝑥 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlslem1.b . . 3 𝐵 = (Base‘𝑃)
2 eqid 2621 . . 3 (1r𝑃) = (1r𝑃)
3 eqid 2621 . . 3 (1r𝑆) = (1r𝑆)
4 eqid 2621 . . 3 (.r𝑃) = (.r𝑃)
5 evlslem1.m . . 3 · = (.r𝑆)
6 evlslem1.i . . . 4 (𝜑𝐼 ∈ V)
7 evlslem1.r . . . . 5 (𝜑𝑅 ∈ CRing)
8 crngring 18479 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
97, 8syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
10 evlslem1.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
1110mplring 19371 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
126, 9, 11syl2anc 692 . . 3 (𝜑𝑃 ∈ Ring)
13 evlslem1.s . . . 4 (𝜑𝑆 ∈ CRing)
14 crngring 18479 . . . 4 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
1513, 14syl 17 . . 3 (𝜑𝑆 ∈ Ring)
16 fveq2 6148 . . . . . . 7 (𝑥 = (1r𝑅) → (𝐴𝑥) = (𝐴‘(1r𝑅)))
1716fveq2d 6152 . . . . . 6 (𝑥 = (1r𝑅) → (𝐸‘(𝐴𝑥)) = (𝐸‘(𝐴‘(1r𝑅))))
18 fveq2 6148 . . . . . 6 (𝑥 = (1r𝑅) → (𝐹𝑥) = (𝐹‘(1r𝑅)))
1917, 18eqeq12d 2636 . . . . 5 (𝑥 = (1r𝑅) → ((𝐸‘(𝐴𝑥)) = (𝐹𝑥) ↔ (𝐸‘(𝐴‘(1r𝑅))) = (𝐹‘(1r𝑅))))
20 evlslem1.d . . . . . . . . 9 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
21 eqid 2621 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
22 evlslem1.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
23 evlslem1.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
246adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐾) → 𝐼 ∈ V)
259adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐾) → 𝑅 ∈ Ring)
26 simpr 477 . . . . . . . . 9 ((𝜑𝑥𝐾) → 𝑥𝐾)
2710, 20, 21, 22, 23, 24, 25, 26mplascl 19415 . . . . . . . 8 ((𝜑𝑥𝐾) → (𝐴𝑥) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))))
2827fveq2d 6152 . . . . . . 7 ((𝜑𝑥𝐾) → (𝐸‘(𝐴𝑥)) = (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)))))
29 evlslem1.c . . . . . . . 8 𝐶 = (Base‘𝑆)
30 evlslem1.t . . . . . . . 8 𝑇 = (mulGrp‘𝑆)
31 evlslem1.x . . . . . . . 8 = (.g𝑇)
32 evlslem1.v . . . . . . . 8 𝑉 = (𝐼 mVar 𝑅)
33 evlslem1.e . . . . . . . 8 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
347adantr 481 . . . . . . . 8 ((𝜑𝑥𝐾) → 𝑅 ∈ CRing)
3513adantr 481 . . . . . . . 8 ((𝜑𝑥𝐾) → 𝑆 ∈ CRing)
36 evlslem1.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
3736adantr 481 . . . . . . . 8 ((𝜑𝑥𝐾) → 𝐹 ∈ (𝑅 RingHom 𝑆))
38 evlslem1.g . . . . . . . . 9 (𝜑𝐺:𝐼𝐶)
3938adantr 481 . . . . . . . 8 ((𝜑𝑥𝐾) → 𝐺:𝐼𝐶)
4020psrbag0 19413 . . . . . . . . . 10 (𝐼 ∈ V → (𝐼 × {0}) ∈ 𝐷)
416, 40syl 17 . . . . . . . . 9 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
4241adantr 481 . . . . . . . 8 ((𝜑𝑥𝐾) → (𝐼 × {0}) ∈ 𝐷)
4310, 1, 29, 22, 20, 30, 31, 5, 32, 33, 24, 34, 35, 37, 39, 21, 42, 26evlslem3 19433 . . . . . . 7 ((𝜑𝑥𝐾) → (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)))) = ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘𝑓 𝐺))))
44 0zd 11333 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 0 ∈ ℤ)
45 fvex 6158 . . . . . . . . . . . . . . 15 (𝐺𝑥) ∈ V
4645a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ V)
47 fconstmpt 5123 . . . . . . . . . . . . . . 15 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
4847a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 × {0}) = (𝑥𝐼 ↦ 0))
4938feqmptd 6206 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
506, 44, 46, 48, 49offval2 6867 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 × {0}) ∘𝑓 𝐺) = (𝑥𝐼 ↦ (0 (𝐺𝑥))))
5138ffvelrnda 6315 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ 𝐶)
5230, 29mgpbas 18416 . . . . . . . . . . . . . . . 16 𝐶 = (Base‘𝑇)
5330, 3ringidval 18424 . . . . . . . . . . . . . . . 16 (1r𝑆) = (0g𝑇)
5452, 53, 31mulg0 17467 . . . . . . . . . . . . . . 15 ((𝐺𝑥) ∈ 𝐶 → (0 (𝐺𝑥)) = (1r𝑆))
5551, 54syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (0 (𝐺𝑥)) = (1r𝑆))
5655mpteq2dva 4704 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐼 ↦ (0 (𝐺𝑥))) = (𝑥𝐼 ↦ (1r𝑆)))
5750, 56eqtrd 2655 . . . . . . . . . . . 12 (𝜑 → ((𝐼 × {0}) ∘𝑓 𝐺) = (𝑥𝐼 ↦ (1r𝑆)))
5857oveq2d 6620 . . . . . . . . . . 11 (𝜑 → (𝑇 Σg ((𝐼 × {0}) ∘𝑓 𝐺)) = (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))))
5930crngmgp 18476 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
6013, 59syl 17 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ CMnd)
61 cmnmnd 18129 . . . . . . . . . . . . 13 (𝑇 ∈ CMnd → 𝑇 ∈ Mnd)
6260, 61syl 17 . . . . . . . . . . . 12 (𝜑𝑇 ∈ Mnd)
6353gsumz 17295 . . . . . . . . . . . 12 ((𝑇 ∈ Mnd ∧ 𝐼 ∈ V) → (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))) = (1r𝑆))
6462, 6, 63syl2anc 692 . . . . . . . . . . 11 (𝜑 → (𝑇 Σg (𝑥𝐼 ↦ (1r𝑆))) = (1r𝑆))
6558, 64eqtrd 2655 . . . . . . . . . 10 (𝜑 → (𝑇 Σg ((𝐼 × {0}) ∘𝑓 𝐺)) = (1r𝑆))
6665adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐾) → (𝑇 Σg ((𝐼 × {0}) ∘𝑓 𝐺)) = (1r𝑆))
6766oveq2d 6620 . . . . . . . 8 ((𝜑𝑥𝐾) → ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘𝑓 𝐺))) = ((𝐹𝑥) · (1r𝑆)))
6822, 29rhmf 18647 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐾𝐶)
6936, 68syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐾𝐶)
7069ffvelrnda 6315 . . . . . . . . 9 ((𝜑𝑥𝐾) → (𝐹𝑥) ∈ 𝐶)
7129, 5, 3ringridm 18493 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ (𝐹𝑥) ∈ 𝐶) → ((𝐹𝑥) · (1r𝑆)) = (𝐹𝑥))
7215, 70, 71syl2an2r 875 . . . . . . . 8 ((𝜑𝑥𝐾) → ((𝐹𝑥) · (1r𝑆)) = (𝐹𝑥))
7367, 72eqtrd 2655 . . . . . . 7 ((𝜑𝑥𝐾) → ((𝐹𝑥) · (𝑇 Σg ((𝐼 × {0}) ∘𝑓 𝐺))) = (𝐹𝑥))
7428, 43, 733eqtrd 2659 . . . . . 6 ((𝜑𝑥𝐾) → (𝐸‘(𝐴𝑥)) = (𝐹𝑥))
7574ralrimiva 2960 . . . . 5 (𝜑 → ∀𝑥𝐾 (𝐸‘(𝐴𝑥)) = (𝐹𝑥))
76 eqid 2621 . . . . . . 7 (1r𝑅) = (1r𝑅)
7722, 76ringidcl 18489 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
789, 77syl 17 . . . . 5 (𝜑 → (1r𝑅) ∈ 𝐾)
7919, 75, 78rspcdva 3301 . . . 4 (𝜑 → (𝐸‘(𝐴‘(1r𝑅))) = (𝐹‘(1r𝑅)))
8010mplassa 19373 . . . . . . . . 9 ((𝐼 ∈ V ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg)
816, 7, 80syl2anc 692 . . . . . . . 8 (𝜑𝑃 ∈ AssAlg)
82 eqid 2621 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
8323, 82asclrhm 19261 . . . . . . . 8 (𝑃 ∈ AssAlg → 𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃))
8481, 83syl 17 . . . . . . 7 (𝜑𝐴 ∈ ((Scalar‘𝑃) RingHom 𝑃))
8510, 6, 7mplsca 19364 . . . . . . . 8 (𝜑𝑅 = (Scalar‘𝑃))
8685oveq1d 6619 . . . . . . 7 (𝜑 → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
8784, 86eleqtrrd 2701 . . . . . 6 (𝜑𝐴 ∈ (𝑅 RingHom 𝑃))
8876, 2rhm1 18651 . . . . . 6 (𝐴 ∈ (𝑅 RingHom 𝑃) → (𝐴‘(1r𝑅)) = (1r𝑃))
8987, 88syl 17 . . . . 5 (𝜑 → (𝐴‘(1r𝑅)) = (1r𝑃))
9089fveq2d 6152 . . . 4 (𝜑 → (𝐸‘(𝐴‘(1r𝑅))) = (𝐸‘(1r𝑃)))
9176, 3rhm1 18651 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
9236, 91syl 17 . . . 4 (𝜑 → (𝐹‘(1r𝑅)) = (1r𝑆))
9379, 90, 923eqtr3d 2663 . . 3 (𝜑 → (𝐸‘(1r𝑃)) = (1r𝑆))
94 eqid 2621 . . . . 5 (+g𝑃) = (+g𝑃)
95 eqid 2621 . . . . 5 (+g𝑆) = (+g𝑆)
96 ringgrp 18473 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
9712, 96syl 17 . . . . 5 (𝜑𝑃 ∈ Grp)
98 ringgrp 18473 . . . . . 6 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
9915, 98syl 17 . . . . 5 (𝜑𝑆 ∈ Grp)
100 eqid 2621 . . . . . . 7 (0g𝑆) = (0g𝑆)
101 ringcmn 18502 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ CMnd)
10215, 101syl 17 . . . . . . . 8 (𝜑𝑆 ∈ CMnd)
103102adantr 481 . . . . . . 7 ((𝜑𝑝𝐵) → 𝑆 ∈ CMnd)
104 ovex 6632 . . . . . . . . 9 (ℕ0𝑚 𝐼) ∈ V
10520, 104rabex2 4775 . . . . . . . 8 𝐷 ∈ V
106105a1i 11 . . . . . . 7 ((𝜑𝑝𝐵) → 𝐷 ∈ V)
1076adantr 481 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐼 ∈ V)
1087adantr 481 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑅 ∈ CRing)
10913adantr 481 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑆 ∈ CRing)
11036adantr 481 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
11138adantr 481 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝐺:𝐼𝐶)
112 simpr 477 . . . . . . . . 9 ((𝜑𝑝𝐵) → 𝑝𝐵)
11310, 1, 29, 22, 20, 30, 31, 5, 32, 33, 107, 108, 109, 110, 111, 112evlslem6 19432 . . . . . . . 8 ((𝜑𝑝𝐵) → ((𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆)))
114113simpld 475 . . . . . . 7 ((𝜑𝑝𝐵) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶)
115113simprd 479 . . . . . . 7 ((𝜑𝑝𝐵) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆))
11629, 100, 103, 106, 114, 115gsumcl 18237 . . . . . 6 ((𝜑𝑝𝐵) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) ∈ 𝐶)
117116, 33fmptd 6340 . . . . 5 (𝜑𝐸:𝐵𝐶)
118 eqid 2621 . . . . . . . . . . . . . . . . 17 (+g𝑅) = (+g𝑅)
119 simplrl 799 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑥𝐵)
120 simplrr 800 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑦𝐵)
12110, 1, 118, 94, 119, 120mpladd 19361 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑥(+g𝑃)𝑦) = (𝑥𝑓 (+g𝑅)𝑦))
122121fveq1d 6150 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥(+g𝑃)𝑦)‘𝑏) = ((𝑥𝑓 (+g𝑅)𝑦)‘𝑏))
123 simprl 793 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
12410, 22, 1, 20, 123mplelf 19352 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐷𝐾)
125124ffnd 6003 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 Fn 𝐷)
126125adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑥 Fn 𝐷)
127 simprr 795 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
12810, 22, 1, 20, 127mplelf 19352 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐷𝐾)
129128ffnd 6003 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 Fn 𝐷)
130129adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑦 Fn 𝐷)
131105a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐷 ∈ V)
132 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑏𝐷)
133 fnfvof 6864 . . . . . . . . . . . . . . . 16 (((𝑥 Fn 𝐷𝑦 Fn 𝐷) ∧ (𝐷 ∈ V ∧ 𝑏𝐷)) → ((𝑥𝑓 (+g𝑅)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
134126, 130, 131, 132, 133syl22anc 1324 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥𝑓 (+g𝑅)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
135122, 134eqtrd 2655 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝑥(+g𝑃)𝑦)‘𝑏) = ((𝑥𝑏)(+g𝑅)(𝑦𝑏)))
136135fveq2d 6152 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) = (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))))
137 rhmghm 18646 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
13836, 137syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
139138ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
140124ffvelrnda 6315 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑥𝑏) ∈ 𝐾)
141128ffvelrnda 6315 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑦𝑏) ∈ 𝐾)
14222, 118, 95ghmlin 17586 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑥𝑏) ∈ 𝐾 ∧ (𝑦𝑏) ∈ 𝐾) → (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
143139, 140, 141, 142syl3anc 1323 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥𝑏)(+g𝑅)(𝑦𝑏))) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
144136, 143eqtrd 2655 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) = ((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))))
145144oveq1d 6619 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) = (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏𝑓 𝐺))))
14615ad2antrr 761 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑆 ∈ Ring)
14769ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐹:𝐾𝐶)
148147, 140ffvelrnd 6316 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘(𝑥𝑏)) ∈ 𝐶)
149147, 141ffvelrnd 6316 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝐹‘(𝑦𝑏)) ∈ 𝐶)
15060ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝑇 ∈ CMnd)
15138ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐺:𝐼𝐶)
1526ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → 𝐼 ∈ V)
15320, 52, 31, 53, 150, 132, 151, 152psrbagev2 19430 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶)
15429, 95, 5ringdir 18488 . . . . . . . . . . . 12 ((𝑆 ∈ Ring ∧ ((𝐹‘(𝑥𝑏)) ∈ 𝐶 ∧ (𝐹‘(𝑦𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏𝑓 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
155146, 148, 149, 153, 154syl13anc 1325 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → (((𝐹‘(𝑥𝑏))(+g𝑆)(𝐹‘(𝑦𝑏))) · (𝑇 Σg (𝑏𝑓 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
156145, 155eqtrd 2655 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) = (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
157156mpteq2dva 4704 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) = (𝑏𝐷 ↦ (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
158105a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ V)
159 ovex 6632 . . . . . . . . . . 11 ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ V
160159a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ V)
161 ovex 6632 . . . . . . . . . . 11 ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ V
162161a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑏𝐷) → ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ V)
163 eqidd 2622 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
164 eqidd 2622 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
165158, 160, 162, 163, 164offval2 6867 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∘𝑓 (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) = (𝑏𝐷 ↦ (((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))(+g𝑆)((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
166157, 165eqtr4d 2658 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) = ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∘𝑓 (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
167166oveq2d 6620 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) = (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∘𝑓 (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))))
168102adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ CMnd)
1696adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐼 ∈ V)
1707adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ CRing)
17113adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ CRing)
17236adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
17338adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺:𝐼𝐶)
17410, 1, 29, 22, 20, 30, 31, 5, 32, 33, 169, 170, 171, 172, 173, 123evlslem6 19432 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆)))
175174simpld 475 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶)
17610, 1, 29, 22, 20, 30, 31, 5, 32, 33, 169, 170, 171, 172, 173, 127evlslem6 19432 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆)))
177176simpld 475 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶)
178174simprd 479 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆))
179176simprd 479 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆))
18029, 100, 95, 168, 158, 175, 177, 178, 179gsumadd 18244 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg ((𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∘𝑓 (+g𝑆)(𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))))
181167, 180eqtrd 2655 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))))
18297adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Grp)
1831, 94grpcl 17351 . . . . . . . 8 ((𝑃 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
184182, 123, 127, 183syl3anc 1323 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
185 fveq1 6147 . . . . . . . . . . . 12 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑝𝑏) = ((𝑥(+g𝑃)𝑦)‘𝑏))
186185fveq2d 6152 . . . . . . . . . . 11 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝐹‘(𝑝𝑏)) = (𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)))
187186oveq1d 6619 . . . . . . . . . 10 (𝑝 = (𝑥(+g𝑃)𝑦) → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) = ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))
188187mpteq2dv 4705 . . . . . . . . 9 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
189188oveq2d 6620 . . . . . . . 8 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
190 ovex 6632 . . . . . . . 8 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) ∈ V
191189, 33, 190fvmpt 6239 . . . . . . 7 ((𝑥(+g𝑃)𝑦) ∈ 𝐵 → (𝐸‘(𝑥(+g𝑃)𝑦)) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
192184, 191syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(+g𝑃)𝑦)) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥(+g𝑃)𝑦)‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
193 fveq1 6147 . . . . . . . . . . . . 13 (𝑝 = 𝑥 → (𝑝𝑏) = (𝑥𝑏))
194193fveq2d 6152 . . . . . . . . . . . 12 (𝑝 = 𝑥 → (𝐹‘(𝑝𝑏)) = (𝐹‘(𝑥𝑏)))
195194oveq1d 6619 . . . . . . . . . . 11 (𝑝 = 𝑥 → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) = ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))
196195mpteq2dv 4705 . . . . . . . . . 10 (𝑝 = 𝑥 → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
197196oveq2d 6620 . . . . . . . . 9 (𝑝 = 𝑥 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
198 ovex 6632 . . . . . . . . 9 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) ∈ V
199197, 33, 198fvmpt 6239 . . . . . . . 8 (𝑥𝐵 → (𝐸𝑥) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
200123, 199syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
201 fveq1 6147 . . . . . . . . . . . . 13 (𝑝 = 𝑦 → (𝑝𝑏) = (𝑦𝑏))
202201fveq2d 6152 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝐹‘(𝑝𝑏)) = (𝐹‘(𝑦𝑏)))
203202oveq1d 6619 . . . . . . . . . . 11 (𝑝 = 𝑦 → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) = ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))
204203mpteq2dv 4705 . . . . . . . . . 10 (𝑝 = 𝑦 → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
205204oveq2d 6620 . . . . . . . . 9 (𝑝 = 𝑦 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
206 ovex 6632 . . . . . . . . 9 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) ∈ V
207205, 33, 206fvmpt 6239 . . . . . . . 8 (𝑦𝐵 → (𝐸𝑦) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
208207ad2antll 764 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
209200, 208oveq12d 6622 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐸𝑥)(+g𝑆)(𝐸𝑦)) = ((𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑥𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))(+g𝑆)(𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑦𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))))
210181, 192, 2093eqtr4d 2665 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(+g𝑃)𝑦)) = ((𝐸𝑥)(+g𝑆)(𝐸𝑦)))
2111, 29, 94, 95, 97, 99, 117, 210isghmd 17590 . . . 4 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
212 eqid 2621 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
213212, 30rhmmhm 18643 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
21436, 213syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
215214adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇))
216 simprll 801 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑥𝐵)
21710, 22, 1, 20, 216mplelf 19352 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑥:𝐷𝐾)
218 simprrl 803 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑧𝐷)
219217, 218ffvelrnd 6316 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑥𝑧) ∈ 𝐾)
220 simprlr 802 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑦𝐵)
22110, 22, 1, 20, 220mplelf 19352 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑦:𝐷𝐾)
222 simprrr 804 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑤𝐷)
223221, 222ffvelrnd 6316 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑦𝑤) ∈ 𝐾)
224212, 22mgpbas 18416 . . . . . . . . 9 𝐾 = (Base‘(mulGrp‘𝑅))
225 eqid 2621 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
226212, 225mgpplusg 18414 . . . . . . . . 9 (.r𝑅) = (+g‘(mulGrp‘𝑅))
22730, 5mgpplusg 18414 . . . . . . . . 9 · = (+g𝑇)
228224, 226, 227mhmlin 17263 . . . . . . . 8 ((𝐹 ∈ ((mulGrp‘𝑅) MndHom 𝑇) ∧ (𝑥𝑧) ∈ 𝐾 ∧ (𝑦𝑤) ∈ 𝐾) → (𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))))
229215, 219, 223, 228syl3anc 1323 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))))
23062ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → 𝑇 ∈ Mnd)
231 simprl 793 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧𝐷)
23220psrbagf 19284 . . . . . . . . . . . . . . 15 ((𝐼 ∈ V ∧ 𝑧𝐷) → 𝑧:𝐼⟶ℕ0)
2336, 231, 232syl2an2r 875 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧:𝐼⟶ℕ0)
234233ffvelrnda 6315 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑧𝑣) ∈ ℕ0)
235 simprr 795 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤𝐷)
23620psrbagf 19284 . . . . . . . . . . . . . . 15 ((𝐼 ∈ V ∧ 𝑤𝐷) → 𝑤:𝐼⟶ℕ0)
2376, 235, 236syl2an2r 875 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤:𝐼⟶ℕ0)
238237ffvelrnda 6315 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑤𝑣) ∈ ℕ0)
23938adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺:𝐼𝐶)
240239ffvelrnda 6315 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) ∈ 𝐶)
24152, 31, 227mulgnn0dir 17492 . . . . . . . . . . . . 13 ((𝑇 ∈ Mnd ∧ ((𝑧𝑣) ∈ ℕ0 ∧ (𝑤𝑣) ∈ ℕ0 ∧ (𝐺𝑣) ∈ 𝐶)) → (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣)) = (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣))))
242230, 234, 238, 240, 241syl13anc 1325 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣)) = (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣))))
243242mpteq2dva 4704 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑣𝐼 ↦ (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣))) = (𝑣𝐼 ↦ (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣)))))
2446adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐼 ∈ V)
245 ovex 6632 . . . . . . . . . . . . 13 ((𝑧𝑣) + (𝑤𝑣)) ∈ V
246245a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑧𝑣) + (𝑤𝑣)) ∈ V)
247 fvex 6158 . . . . . . . . . . . . 13 (𝐺𝑣) ∈ V
248247a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) ∈ V)
249233ffnd 6003 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑧 Fn 𝐼)
250237ffnd 6003 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑤 Fn 𝐼)
251 inidm 3800 . . . . . . . . . . . . 13 (𝐼𝐼) = 𝐼
252 eqidd 2622 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑧𝑣) = (𝑧𝑣))
253 eqidd 2622 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝑤𝑣) = (𝑤𝑣))
254249, 250, 244, 244, 251, 252, 253offval 6857 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧𝑓 + 𝑤) = (𝑣𝐼 ↦ ((𝑧𝑣) + (𝑤𝑣))))
25538feqmptd 6206 . . . . . . . . . . . . 13 (𝜑𝐺 = (𝑣𝐼 ↦ (𝐺𝑣)))
256255adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺 = (𝑣𝐼 ↦ (𝐺𝑣)))
257244, 246, 248, 254, 256offval2 6867 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧𝑓 + 𝑤) ∘𝑓 𝐺) = (𝑣𝐼 ↦ (((𝑧𝑣) + (𝑤𝑣)) (𝐺𝑣))))
258 ovex 6632 . . . . . . . . . . . . 13 ((𝑧𝑣) (𝐺𝑣)) ∈ V
259258a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑧𝑣) (𝐺𝑣)) ∈ V)
260 ovex 6632 . . . . . . . . . . . . 13 ((𝑤𝑣) (𝐺𝑣)) ∈ V
261260a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → ((𝑤𝑣) (𝐺𝑣)) ∈ V)
26238ffnd 6003 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn 𝐼)
263262adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝐺 Fn 𝐼)
264 eqidd 2622 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐷𝑤𝐷)) ∧ 𝑣𝐼) → (𝐺𝑣) = (𝐺𝑣))
265249, 263, 244, 244, 251, 252, 264offval 6857 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧𝑓 𝐺) = (𝑣𝐼 ↦ ((𝑧𝑣) (𝐺𝑣))))
266250, 263, 244, 244, 251, 253, 264offval 6857 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤𝑓 𝐺) = (𝑣𝐼 ↦ ((𝑤𝑣) (𝐺𝑣))))
267244, 259, 261, 265, 266offval2 6867 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧𝑓 𝐺) ∘𝑓 · (𝑤𝑓 𝐺)) = (𝑣𝐼 ↦ (((𝑧𝑣) (𝐺𝑣)) · ((𝑤𝑣) (𝐺𝑣)))))
268243, 257, 2673eqtr4d 2665 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧𝑓 + 𝑤) ∘𝑓 𝐺) = ((𝑧𝑓 𝐺) ∘𝑓 · (𝑤𝑓 𝐺)))
269268oveq2d 6620 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧𝑓 + 𝑤) ∘𝑓 𝐺)) = (𝑇 Σg ((𝑧𝑓 𝐺) ∘𝑓 · (𝑤𝑓 𝐺))))
27060adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → 𝑇 ∈ CMnd)
27120, 52, 31, 53, 270, 231, 239, 244psrbagev1 19429 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑧𝑓 𝐺):𝐼𝐶 ∧ (𝑧𝑓 𝐺) finSupp (1r𝑆)))
272271simpld 475 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧𝑓 𝐺):𝐼𝐶)
27320, 52, 31, 53, 270, 235, 239, 244psrbagev1 19429 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → ((𝑤𝑓 𝐺):𝐼𝐶 ∧ (𝑤𝑓 𝐺) finSupp (1r𝑆)))
274273simpld 475 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤𝑓 𝐺):𝐼𝐶)
275271simprd 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑧𝑓 𝐺) finSupp (1r𝑆))
276273simprd 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑤𝑓 𝐺) finSupp (1r𝑆))
27752, 53, 227, 270, 244, 272, 274, 275, 276gsumadd 18244 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧𝑓 𝐺) ∘𝑓 · (𝑤𝑓 𝐺))) = ((𝑇 Σg (𝑧𝑓 𝐺)) · (𝑇 Σg (𝑤𝑓 𝐺))))
278269, 277eqtrd 2655 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg ((𝑧𝑓 + 𝑤) ∘𝑓 𝐺)) = ((𝑇 Σg (𝑧𝑓 𝐺)) · (𝑇 Σg (𝑤𝑓 𝐺))))
279278adantrl 751 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg ((𝑧𝑓 + 𝑤) ∘𝑓 𝐺)) = ((𝑇 Σg (𝑧𝑓 𝐺)) · (𝑇 Σg (𝑤𝑓 𝐺))))
280229, 279oveq12d 6622 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧𝑓 + 𝑤) ∘𝑓 𝐺))) = (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧𝑓 𝐺)) · (𝑇 Σg (𝑤𝑓 𝐺)))))
28160adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑇 ∈ CMnd)
28269adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹:𝐾𝐶)
283282, 219ffvelrnd 6316 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘(𝑥𝑧)) ∈ 𝐶)
284282, 223ffvelrnd 6316 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐹‘(𝑦𝑤)) ∈ 𝐶)
28520, 52, 31, 53, 270, 231, 239, 244psrbagev2 19430 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg (𝑧𝑓 𝐺)) ∈ 𝐶)
286285adantrl 751 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg (𝑧𝑓 𝐺)) ∈ 𝐶)
28720, 52, 31, 53, 270, 235, 239, 244psrbagev2 19430 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐷𝑤𝐷)) → (𝑇 Σg (𝑤𝑓 𝐺)) ∈ 𝐶)
288287adantrl 751 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑇 Σg (𝑤𝑓 𝐺)) ∈ 𝐶)
28952, 227cmn4 18133 . . . . . . 7 ((𝑇 ∈ CMnd ∧ ((𝐹‘(𝑥𝑧)) ∈ 𝐶 ∧ (𝐹‘(𝑦𝑤)) ∈ 𝐶) ∧ ((𝑇 Σg (𝑧𝑓 𝐺)) ∈ 𝐶 ∧ (𝑇 Σg (𝑤𝑓 𝐺)) ∈ 𝐶)) → (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧𝑓 𝐺)) · (𝑇 Σg (𝑤𝑓 𝐺)))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧𝑓 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤𝑓 𝐺)))))
290281, 283, 284, 286, 288, 289syl122anc 1332 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (((𝐹‘(𝑥𝑧)) · (𝐹‘(𝑦𝑤))) · ((𝑇 Σg (𝑧𝑓 𝐺)) · (𝑇 Σg (𝑤𝑓 𝐺)))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧𝑓 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤𝑓 𝐺)))))
291280, 290eqtrd 2655 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧𝑓 + 𝑤) ∘𝑓 𝐺))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧𝑓 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤𝑓 𝐺)))))
2926adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐼 ∈ V)
2937adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑅 ∈ CRing)
29413adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑆 ∈ CRing)
29536adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
29638adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝐺:𝐼𝐶)
29720psrbagaddcl 19289 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑧𝐷𝑤𝐷) → (𝑧𝑓 + 𝑤) ∈ 𝐷)
298292, 218, 222, 297syl3anc 1323 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝑧𝑓 + 𝑤) ∈ 𝐷)
2999adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → 𝑅 ∈ Ring)
30022, 225ringcl 18482 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝑧) ∈ 𝐾 ∧ (𝑦𝑤) ∈ 𝐾) → ((𝑥𝑧)(.r𝑅)(𝑦𝑤)) ∈ 𝐾)
301299, 219, 223, 300syl3anc 1323 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝑥𝑧)(.r𝑅)(𝑦𝑤)) ∈ 𝐾)
30210, 1, 29, 22, 20, 30, 31, 5, 32, 33, 292, 293, 294, 295, 296, 21, 298, 301evlslem3 19433 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = (𝑧𝑓 + 𝑤), ((𝑥𝑧)(.r𝑅)(𝑦𝑤)), (0g𝑅)))) = ((𝐹‘((𝑥𝑧)(.r𝑅)(𝑦𝑤))) · (𝑇 Σg ((𝑧𝑓 + 𝑤) ∘𝑓 𝐺))))
30310, 1, 29, 22, 20, 30, 31, 5, 32, 33, 292, 293, 294, 295, 296, 21, 218, 219evlslem3 19433 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) = ((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧𝑓 𝐺))))
30410, 1, 29, 22, 20, 30, 31, 5, 32, 33, 292, 293, 294, 295, 296, 21, 222, 223evlslem3 19433 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅)))) = ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤𝑓 𝐺))))
305303, 304oveq12d 6622 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → ((𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) · (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅))))) = (((𝐹‘(𝑥𝑧)) · (𝑇 Σg (𝑧𝑓 𝐺))) · ((𝐹‘(𝑦𝑤)) · (𝑇 Σg (𝑤𝑓 𝐺)))))
306291, 302, 3053eqtr4d 2665 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐷𝑤𝐷))) → (𝐸‘(𝑣𝐷 ↦ if(𝑣 = (𝑧𝑓 + 𝑤), ((𝑥𝑧)(.r𝑅)(𝑦𝑤)), (0g𝑅)))) = ((𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑧, (𝑥𝑧), (0g𝑅)))) · (𝐸‘(𝑣𝐷 ↦ if(𝑣 = 𝑤, (𝑦𝑤), (0g𝑅))))))
30710, 1, 5, 21, 20, 6, 7, 13, 211, 306evlslem2 19431 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
3081, 2, 3, 4, 5, 12, 15, 93, 307, 29, 94, 95, 117, 210isrhmd 18650 . 2 (𝜑𝐸 ∈ (𝑃 RingHom 𝑆))
309 ovex 6632 . . . . . 6 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) ∈ V
310309, 33fnmpti 5979 . . . . 5 𝐸 Fn 𝐵
311310a1i 11 . . . 4 (𝜑𝐸 Fn 𝐵)
31222, 1rhmf 18647 . . . . . 6 (𝐴 ∈ (𝑅 RingHom 𝑃) → 𝐴:𝐾𝐵)
31387, 312syl 17 . . . . 5 (𝜑𝐴:𝐾𝐵)
314313ffnd 6003 . . . 4 (𝜑𝐴 Fn 𝐾)
315 frn 6010 . . . . 5 (𝐴:𝐾𝐵 → ran 𝐴𝐵)
316313, 315syl 17 . . . 4 (𝜑 → ran 𝐴𝐵)
317 fnco 5957 . . . 4 ((𝐸 Fn 𝐵𝐴 Fn 𝐾 ∧ ran 𝐴𝐵) → (𝐸𝐴) Fn 𝐾)
318311, 314, 316, 317syl3anc 1323 . . 3 (𝜑 → (𝐸𝐴) Fn 𝐾)
31969ffnd 6003 . . 3 (𝜑𝐹 Fn 𝐾)
320 fvco2 6230 . . . . 5 ((𝐴 Fn 𝐾𝑥𝐾) → ((𝐸𝐴)‘𝑥) = (𝐸‘(𝐴𝑥)))
321314, 320sylan 488 . . . 4 ((𝜑𝑥𝐾) → ((𝐸𝐴)‘𝑥) = (𝐸‘(𝐴𝑥)))
322321, 74eqtrd 2655 . . 3 ((𝜑𝑥𝐾) → ((𝐸𝐴)‘𝑥) = (𝐹𝑥))
323318, 319, 322eqfnfvd 6270 . 2 (𝜑 → (𝐸𝐴) = 𝐹)
32410, 32, 1, 6, 9mvrf2 19411 . . . . 5 (𝜑𝑉:𝐼𝐵)
325324ffnd 6003 . . . 4 (𝜑𝑉 Fn 𝐼)
326 frn 6010 . . . . 5 (𝑉:𝐼𝐵 → ran 𝑉𝐵)
327324, 326syl 17 . . . 4 (𝜑 → ran 𝑉𝐵)
328 fnco 5957 . . . 4 ((𝐸 Fn 𝐵𝑉 Fn 𝐼 ∧ ran 𝑉𝐵) → (𝐸𝑉) Fn 𝐼)
329311, 325, 327, 328syl3anc 1323 . . 3 (𝜑 → (𝐸𝑉) Fn 𝐼)
330 fvco2 6230 . . . . 5 ((𝑉 Fn 𝐼𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐸‘(𝑉𝑥)))
331325, 330sylan 488 . . . 4 ((𝜑𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐸‘(𝑉𝑥)))
3326adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼 ∈ V)
3337adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 ∈ CRing)
334 simpr 477 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
33532, 20, 21, 76, 332, 333, 334mvrval 19340 . . . . . 6 ((𝜑𝑥𝐼) → (𝑉𝑥) = (𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))))
336335fveq2d 6152 . . . . 5 ((𝜑𝑥𝐼) → (𝐸‘(𝑉𝑥)) = (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
33713adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝑆 ∈ CRing)
33836adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑆))
33938adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝐺:𝐼𝐶)
34020psrbagsn 19414 . . . . . . . 8 (𝐼 ∈ V → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
3416, 340syl 17 . . . . . . 7 (𝜑 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
342341adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ 𝐷)
34378adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → (1r𝑅) ∈ 𝐾)
34410, 1, 29, 22, 20, 30, 31, 5, 32, 33, 332, 333, 337, 338, 339, 21, 342, 343evlslem3 19433 . . . . 5 ((𝜑𝑥𝐼) → (𝐸‘(𝑦𝐷 ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))) = ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘𝑓 𝐺))))
34592adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐹‘(1r𝑅)) = (1r𝑆))
346 1nn0 11252 . . . . . . . . . . . . . 14 1 ∈ ℕ0
347 0nn0 11251 . . . . . . . . . . . . . 14 0 ∈ ℕ0
348346, 347keepel 4127 . . . . . . . . . . . . 13 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0
349348a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → if(𝑧 = 𝑥, 1, 0) ∈ ℕ0)
35038ffvelrnda 6315 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → (𝐺𝑧) ∈ 𝐶)
351 eqidd 2622 . . . . . . . . . . . 12 (𝜑 → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)))
35238feqmptd 6206 . . . . . . . . . . . 12 (𝜑𝐺 = (𝑧𝐼 ↦ (𝐺𝑧)))
3536, 349, 350, 351, 352offval2 6867 . . . . . . . . . . 11 (𝜑 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘𝑓 𝐺) = (𝑧𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧))))
354 oveq1 6611 . . . . . . . . . . . . . 14 (1 = if(𝑧 = 𝑥, 1, 0) → (1 (𝐺𝑧)) = (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)))
355354eqeq1d 2623 . . . . . . . . . . . . 13 (1 = if(𝑧 = 𝑥, 1, 0) → ((1 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
356 oveq1 6611 . . . . . . . . . . . . . 14 (0 = if(𝑧 = 𝑥, 1, 0) → (0 (𝐺𝑧)) = (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)))
357356eqeq1d 2623 . . . . . . . . . . . . 13 (0 = if(𝑧 = 𝑥, 1, 0) → ((0 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ↔ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
358350adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (𝐺𝑧) ∈ 𝐶)
35952, 31mulg1 17469 . . . . . . . . . . . . . . 15 ((𝐺𝑧) ∈ 𝐶 → (1 (𝐺𝑧)) = (𝐺𝑧))
360358, 359syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (1 (𝐺𝑧)) = (𝐺𝑧))
361 iftrue 4064 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑧))
362361adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑧))
363360, 362eqtr4d 2658 . . . . . . . . . . . . 13 (((𝜑𝑧𝐼) ∧ 𝑧 = 𝑥) → (1 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
36452, 53, 31mulg0 17467 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ 𝐶 → (0 (𝐺𝑧)) = (1r𝑆))
365350, 364syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐼) → (0 (𝐺𝑧)) = (1r𝑆))
366365adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 (𝐺𝑧)) = (1r𝑆))
367 iffalse 4067 . . . . . . . . . . . . . . 15 𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
368367adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
369366, 368eqtr4d 2658 . . . . . . . . . . . . 13 (((𝜑𝑧𝐼) ∧ ¬ 𝑧 = 𝑥) → (0 (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
370355, 357, 363, 369ifbothda 4095 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧)) = if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
371370mpteq2dva 4704 . . . . . . . . . . 11 (𝜑 → (𝑧𝐼 ↦ (if(𝑧 = 𝑥, 1, 0) (𝐺𝑧))) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
372353, 371eqtrd 2655 . . . . . . . . . 10 (𝜑 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘𝑓 𝐺) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
373372adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘𝑓 𝐺) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))))
374373oveq2d 6620 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘𝑓 𝐺)) = (𝑇 Σg (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))))
37562adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝑇 ∈ Mnd)
376350adantlr 750 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → (𝐺𝑧) ∈ 𝐶)
37729, 3ringidcl 18489 . . . . . . . . . . . . 13 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝐶)
37815, 377syl 17 . . . . . . . . . . . 12 (𝜑 → (1r𝑆) ∈ 𝐶)
379378ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → (1r𝑆) ∈ 𝐶)
380376, 379ifcld 4103 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧𝐼) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) ∈ 𝐶)
381 eqid 2621 . . . . . . . . . 10 (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))) = (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))
382380, 381fmptd 6340 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))):𝐼𝐶)
383 eldifn 3711 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐼 ∖ {𝑥}) → ¬ 𝑧 ∈ {𝑥})
384 velsn 4164 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑥} ↔ 𝑧 = 𝑥)
385383, 384sylnib 318 . . . . . . . . . . . 12 (𝑧 ∈ (𝐼 ∖ {𝑥}) → ¬ 𝑧 = 𝑥)
386385, 367syl 17 . . . . . . . . . . 11 (𝑧 ∈ (𝐼 ∖ {𝑥}) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
387386adantl 482 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ (𝐼 ∖ {𝑥})) → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (1r𝑆))
388387, 332suppss2 7274 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆))) supp (1r𝑆)) ⊆ {𝑥})
38952, 53, 375, 332, 334, 382, 388gsumpt 18282 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))) = ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥))
390 fveq2 6148 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
391361, 390eqtrd 2655 . . . . . . . . . 10 (𝑧 = 𝑥 → if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)) = (𝐺𝑥))
392391, 381, 45fvmpt 6239 . . . . . . . . 9 (𝑥𝐼 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥) = (𝐺𝑥))
393392adantl 482 . . . . . . . 8 ((𝜑𝑥𝐼) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, (𝐺𝑧), (1r𝑆)))‘𝑥) = (𝐺𝑥))
394374, 389, 3933eqtrd 2659 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘𝑓 𝐺)) = (𝐺𝑥))
395345, 394oveq12d 6622 . . . . . 6 ((𝜑𝑥𝐼) → ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘𝑓 𝐺))) = ((1r𝑆) · (𝐺𝑥)))
39629, 5, 3ringlidm 18492 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐺𝑥) ∈ 𝐶) → ((1r𝑆) · (𝐺𝑥)) = (𝐺𝑥))
39715, 51, 396syl2an2r 875 . . . . . 6 ((𝜑𝑥𝐼) → ((1r𝑆) · (𝐺𝑥)) = (𝐺𝑥))
398395, 397eqtrd 2655 . . . . 5 ((𝜑𝑥𝐼) → ((𝐹‘(1r𝑅)) · (𝑇 Σg ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∘𝑓 𝐺))) = (𝐺𝑥))
399336, 344, 3983eqtrd 2659 . . . 4 ((𝜑𝑥𝐼) → (𝐸‘(𝑉𝑥)) = (𝐺𝑥))
400331, 399eqtrd 2655 . . 3 ((𝜑𝑥𝐼) → ((𝐸𝑉)‘𝑥) = (𝐺𝑥))
401329, 262, 400eqfnfvd 6270 . 2 (𝜑 → (𝐸𝑉) = 𝐺)
402308, 323, 4013jca 1240 1 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸𝐴) = 𝐹 ∧ (𝐸𝑉) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3186  cdif 3552  wss 3555  ifcif 4058  {csn 4148   class class class wbr 4613  cmpt 4673   × cxp 5072  ccnv 5073  ran crn 5075  cima 5077  ccom 5078   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  𝑓 cof 6848  𝑚 cmap 7802  Fincfn 7899   finSupp cfsupp 8219  0cc0 9880  1c1 9881   + caddc 9883  cn 10964  0cn0 11236  cz 11321  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  Scalarcsca 15865  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215   MndHom cmhm 17254  Grpcgrp 17343  .gcmg 17461   GrpHom cghm 17578  CMndccmn 18114  mulGrpcmgp 18410  1rcur 18422  Ringcrg 18468  CRingccrg 18469   RingHom crh 18633  AssAlgcasa 19228  algSccascl 19230   mVar cmvr 19271   mPoly cmpl 19272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-tset 15881  df-0g 16023  df-gsum 16024  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-rnghom 18636  df-subrg 18699  df-lmod 18786  df-lss 18852  df-assa 19231  df-ascl 19233  df-psr 19275  df-mvr 19276  df-mpl 19277
This theorem is referenced by:  evlseu  19435
  Copyright terms: Public domain W3C validator