MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucr Structured version   Visualization version   GIF version

Theorem relexpsucr 13703
Description: A reduction for relation exponentiation to the right. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpsucr ((𝑅𝑉 ∧ Rel 𝑅𝑁 ∈ ℕ0) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))

Proof of Theorem relexpsucr
StepHypRef Expression
1 elnn0 11238 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simp3 1061 . . . . . . 7 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → 𝑅𝑉)
3 simp1 1059 . . . . . . 7 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → 𝑁 ∈ ℕ)
4 relexpsucnnr 13699 . . . . . . 7 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
52, 3, 4syl2anc 692 . . . . . 6 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
653expib 1265 . . . . 5 (𝑁 ∈ ℕ → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)))
7 simp2 1060 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → Rel 𝑅)
8 relcoi2 5622 . . . . . . . . 9 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)
98eqcomd 2627 . . . . . . . 8 (Rel 𝑅𝑅 = (( I ↾ 𝑅) ∘ 𝑅))
107, 9syl 17 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑅 = (( I ↾ 𝑅) ∘ 𝑅))
11 simp1 1059 . . . . . . . . . . 11 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑁 = 0)
1211oveq1d 6619 . . . . . . . . . 10 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑁 + 1) = (0 + 1))
13 0p1e1 11076 . . . . . . . . . 10 (0 + 1) = 1
1412, 13syl6eq 2671 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑁 + 1) = 1)
1514oveq2d 6620 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅𝑟1))
16 simp3 1061 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑅𝑉)
17 relexp1g 13700 . . . . . . . . 9 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1816, 17syl 17 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟1) = 𝑅)
1915, 18eqtrd 2655 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = 𝑅)
2011oveq2d 6620 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
21 relexp0 13697 . . . . . . . . . 10 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅𝑟0) = ( I ↾ 𝑅))
2216, 7, 21syl2anc 692 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟0) = ( I ↾ 𝑅))
2320, 22eqtrd 2655 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ 𝑅))
2423coeq1d 5243 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → ((𝑅𝑟𝑁) ∘ 𝑅) = (( I ↾ 𝑅) ∘ 𝑅))
2510, 19, 243eqtr4d 2665 . . . . . 6 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
26253expib 1265 . . . . 5 (𝑁 = 0 → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)))
276, 26jaoi 394 . . . 4 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)))
281, 27sylbi 207 . . 3 (𝑁 ∈ ℕ0 → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)))
29283impib 1259 . 2 ((𝑁 ∈ ℕ0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
30293com13 1267 1 ((𝑅𝑉 ∧ Rel 𝑅𝑁 ∈ ℕ0) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987   cuni 4402   I cid 4984  cres 5076  ccom 5078  Rel wrel 5079  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883  cn 10964  0cn0 11236  𝑟crelexp 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-seq 12742  df-relexp 13695
This theorem is referenced by:  relexpsucrd  13704
  Copyright terms: Public domain W3C validator