Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsscmap2 Structured version   Visualization version   GIF version

Theorem rhmsscmap2 42344
 Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.)
Hypotheses
Ref Expression
rhmsscmap.u (𝜑𝑈𝑉)
rhmsscmap.r (𝜑𝑅 = (Ring ∩ 𝑈))
Assertion
Ref Expression
rhmsscmap2 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rhmsscmap2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3657 . . 3 𝑅𝑅
21a1i 11 . 2 (𝜑𝑅𝑅)
3 eqid 2651 . . . . . . 7 (Base‘𝑎) = (Base‘𝑎)
4 eqid 2651 . . . . . . 7 (Base‘𝑏) = (Base‘𝑏)
53, 4rhmf 18774 . . . . . 6 ( ∈ (𝑎 RingHom 𝑏) → :(Base‘𝑎)⟶(Base‘𝑏))
6 simpr 476 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → :(Base‘𝑎)⟶(Base‘𝑏))
7 fvex 6239 . . . . . . . . . 10 (Base‘𝑏) ∈ V
8 fvex 6239 . . . . . . . . . 10 (Base‘𝑎) ∈ V
97, 8pm3.2i 470 . . . . . . . . 9 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
10 elmapg 7912 . . . . . . . . 9 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
119, 10mp1i 13 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ( ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
126, 11mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
1312ex 449 . . . . . 6 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))))
145, 13syl5 34 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ( ∈ (𝑎 RingHom 𝑏) → ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))))
1514ssrdv 3642 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎 RingHom 𝑏) ⊆ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
16 ovres 6842 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏))
1716adantl 481 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏))
18 eqidd 2652 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
19 fveq2 6229 . . . . . . . 8 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
20 fveq2 6229 . . . . . . . 8 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
2119, 20oveqan12rd 6710 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
2221adantl 481 . . . . . 6 (((𝑎𝑅𝑏𝑅) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
23 simpl 472 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑎𝑅)
24 simpr 476 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑏𝑅)
25 ovexd 6720 . . . . . 6 ((𝑎𝑅𝑏𝑅) → ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ∈ V)
2618, 22, 23, 24, 25ovmpt2d 6830 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
2726adantl 481 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
2815, 17, 273sstr4d 3681 . . 3 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏))
2928ralrimivva 3000 . 2 (𝜑 → ∀𝑎𝑅𝑏𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏))
30 rhmfn 42243 . . . . 5 RingHom Fn (Ring × Ring)
3130a1i 11 . . . 4 (𝜑 → RingHom Fn (Ring × Ring))
32 rhmsscmap.r . . . . . 6 (𝜑𝑅 = (Ring ∩ 𝑈))
33 inss1 3866 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
3432, 33syl6eqss 3688 . . . . 5 (𝜑𝑅 ⊆ Ring)
35 xpss12 5158 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
3634, 34, 35syl2anc 694 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
37 fnssres 6042 . . . 4 (( RingHom Fn (Ring × Ring) ∧ (𝑅 × 𝑅) ⊆ (Ring × Ring)) → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
3831, 36, 37syl2anc 694 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
39 eqid 2651 . . . . 5 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))
40 ovex 6718 . . . . 5 ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) ∈ V
4139, 40fnmpt2i 7284 . . . 4 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) Fn (𝑅 × 𝑅)
4241a1i 11 . . 3 (𝜑 → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) Fn (𝑅 × 𝑅))
43 incom 3838 . . . . 5 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
44 rhmsscmap.u . . . . . 6 (𝜑𝑈𝑉)
45 inex1g 4834 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
4644, 45syl 17 . . . . 5 (𝜑 → (𝑈 ∩ Ring) ∈ V)
4743, 46syl5eqel 2734 . . . 4 (𝜑 → (Ring ∩ 𝑈) ∈ V)
4832, 47eqeltrd 2730 . . 3 (𝜑𝑅 ∈ V)
4938, 42, 48isssc 16527 . 2 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) ↔ (𝑅𝑅 ∧ ∀𝑎𝑅𝑏𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏))))
502, 29, 49mpbir2and 977 1 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  Vcvv 3231   ∩ cin 3606   ⊆ wss 3607   class class class wbr 4685   × cxp 5141   ↾ cres 5145   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692   ↑𝑚 cmap 7899  Basecbs 15904   ⊆cat cssc 16514  Ringcrg 18593   RingHom crh 18760 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-ssc 16517  df-mhm 17382  df-ghm 17705  df-mgp 18536  df-ur 18548  df-ring 18595  df-rnghom 18763 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator