MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2rid2ex Structured version   Visualization version   GIF version

Theorem sgrp2rid2ex 17611
Description: A small semigroup (with two elements) with two right identities which are different. (Contributed by AV, 10-Feb-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2rid2ex ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥, ,𝑦   𝑧,𝐴   𝑧,𝐵   𝑧,𝑆   𝑧, ,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑧)

Proof of Theorem sgrp2rid2ex
StepHypRef Expression
1 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
21hashprdifel 13374 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 simp1 1131 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝑆)
4 simp2 1132 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
5 simpl3 1232 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝑦𝑆) → 𝐴𝐵)
65ralrimiva 3100 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 𝐴𝐵)
7 mgm2nsgrp.b . . . . . . 7 (Base‘𝑀) = 𝑆
8 sgrp2nmnd.o . . . . . . 7 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
9 sgrp2nmnd.p . . . . . . 7 = (+g𝑀)
101, 7, 8, 9sgrp2rid2 17610 . . . . . 6 ((𝐴𝑆𝐵𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦)
11 oveq2 6817 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑦 𝑥) = (𝑦 𝐴))
1211eqeq1d 2758 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑦 𝑥) = 𝑦 ↔ (𝑦 𝐴) = 𝑦))
1312ralbidv 3120 . . . . . . . 8 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1413rspcv 3441 . . . . . . 7 (𝐴𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1514adantr 472 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1610, 15mpd 15 . . . . 5 ((𝐴𝑆𝐵𝑆) → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦)
17163adant3 1127 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦)
18 oveq2 6817 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑦 𝑥) = (𝑦 𝐵))
1918eqeq1d 2758 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝑦 𝑥) = 𝑦 ↔ (𝑦 𝐵) = 𝑦))
2019ralbidv 3120 . . . . . . . 8 (𝑥 = 𝐵 → (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2120rspcv 3441 . . . . . . 7 (𝐵𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2221adantl 473 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2310, 22mpd 15 . . . . 5 ((𝐴𝑆𝐵𝑆) → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦)
24233adant3 1127 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦)
25 r19.26-3 3200 . . . 4 (∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦) ↔ (∀𝑦𝑆 𝐴𝐵 ∧ ∀𝑦𝑆 (𝑦 𝐴) = 𝑦 ∧ ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
266, 17, 24, 25syl3anbrc 1429 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦))
273, 4, 263jca 1123 . 2 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴𝑆𝐵𝑆 ∧ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
28 neeq1 2990 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
29 biidd 252 . . . . 5 (𝑥 = 𝐴 → ((𝑦 𝑧) = 𝑦 ↔ (𝑦 𝑧) = 𝑦))
3028, 12, 293anbi123d 1544 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦)))
3130ralbidv 3120 . . 3 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ ∀𝑦𝑆 (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦)))
32 neeq2 2991 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
33 biidd 252 . . . . 5 (𝑧 = 𝐵 → ((𝑦 𝐴) = 𝑦 ↔ (𝑦 𝐴) = 𝑦))
34 oveq2 6817 . . . . . 6 (𝑧 = 𝐵 → (𝑦 𝑧) = (𝑦 𝐵))
3534eqeq1d 2758 . . . . 5 (𝑧 = 𝐵 → ((𝑦 𝑧) = 𝑦 ↔ (𝑦 𝐵) = 𝑦))
3632, 33, 353anbi123d 1544 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
3736ralbidv 3120 . . 3 (𝑧 = 𝐵 → (∀𝑦𝑆 (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
3831, 37rspc2ev 3459 . 2 ((𝐴𝑆𝐵𝑆 ∧ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)) → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
392, 27, 383syl 18 1 ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1628  wcel 2135  wne 2928  wral 3046  wrex 3047  ifcif 4226  {cpr 4319  cfv 6045  (class class class)co 6809  cmpt2 6811  2c2 11258  chash 13307  Basecbs 16055  +gcplusg 16139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-card 8951  df-cda 9178  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-2 11267  df-n0 11481  df-z 11566  df-uz 11876  df-fz 12516  df-hash 13308
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator