Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem16 Structured version   Visualization version   GIF version

Theorem stoweidlem16 39561
Description: Lemma for stoweid 39608. The subset 𝑌 of functions in the algebra 𝐴, with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem16.1 𝑡𝜑
stoweidlem16.2 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem16.3 𝐻 = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
stoweidlem16.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem16.5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem16 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻𝑌)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝐴   𝑇,𝑓,,𝑡   𝜑,𝑓   ,𝐻
Allowed substitution hints:   𝜑(𝑡,𝑔,)   𝑇(𝑔)   𝐻(𝑡,𝑓,𝑔)   𝑌(𝑡,𝑓,𝑔,)

Proof of Theorem stoweidlem16
StepHypRef Expression
1 stoweidlem16.3 . . . 4 𝐻 = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
2 simp1 1059 . . . . 5 ((𝜑𝑓𝑌𝑔𝑌) → 𝜑)
3 fveq1 6152 . . . . . . . . . . 11 ( = 𝑓 → (𝑡) = (𝑓𝑡))
43breq2d 4630 . . . . . . . . . 10 ( = 𝑓 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑓𝑡)))
53breq1d 4628 . . . . . . . . . 10 ( = 𝑓 → ((𝑡) ≤ 1 ↔ (𝑓𝑡) ≤ 1))
64, 5anbi12d 746 . . . . . . . . 9 ( = 𝑓 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
76ralbidv 2981 . . . . . . . 8 ( = 𝑓 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
8 stoweidlem16.2 . . . . . . . 8 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
97, 8elrab2 3352 . . . . . . 7 (𝑓𝑌 ↔ (𝑓𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
109simplbi 476 . . . . . 6 (𝑓𝑌𝑓𝐴)
11103ad2ant2 1081 . . . . 5 ((𝜑𝑓𝑌𝑔𝑌) → 𝑓𝐴)
12 fveq1 6152 . . . . . . . . . . 11 ( = 𝑔 → (𝑡) = (𝑔𝑡))
1312breq2d 4630 . . . . . . . . . 10 ( = 𝑔 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑔𝑡)))
1412breq1d 4628 . . . . . . . . . 10 ( = 𝑔 → ((𝑡) ≤ 1 ↔ (𝑔𝑡) ≤ 1))
1513, 14anbi12d 746 . . . . . . . . 9 ( = 𝑔 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
1615ralbidv 2981 . . . . . . . 8 ( = 𝑔 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
1716, 8elrab2 3352 . . . . . . 7 (𝑔𝑌 ↔ (𝑔𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
1817simplbi 476 . . . . . 6 (𝑔𝑌𝑔𝐴)
19183ad2ant3 1082 . . . . 5 ((𝜑𝑓𝑌𝑔𝑌) → 𝑔𝐴)
20 stoweidlem16.5 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
212, 11, 19, 20syl3anc 1323 . . . 4 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
221, 21syl5eqel 2702 . . 3 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻𝐴)
23 stoweidlem16.1 . . . . 5 𝑡𝜑
24 nfra1 2936 . . . . . . . 8 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
25 nfcv 2761 . . . . . . . 8 𝑡𝐴
2624, 25nfrab 3115 . . . . . . 7 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
278, 26nfcxfr 2759 . . . . . 6 𝑡𝑌
2827nfcri 2755 . . . . 5 𝑡 𝑓𝑌
2927nfcri 2755 . . . . 5 𝑡 𝑔𝑌
3023, 28, 29nf3an 1828 . . . 4 𝑡(𝜑𝑓𝑌𝑔𝑌)
312, 11jca 554 . . . . . . . . . . 11 ((𝜑𝑓𝑌𝑔𝑌) → (𝜑𝑓𝐴))
3231adantr 481 . . . . . . . . . 10 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝜑𝑓𝐴))
33 stoweidlem16.4 . . . . . . . . . 10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
3432, 33syl 17 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 𝑓:𝑇⟶ℝ)
35 simpr 477 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 𝑡𝑇)
3634, 35ffvelrnd 6321 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℝ)
372, 19jca 554 . . . . . . . . . 10 ((𝜑𝑓𝑌𝑔𝑌) → (𝜑𝑔𝐴))
38 eleq1 2686 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓𝐴𝑔𝐴))
3938anbi2d 739 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝜑𝑓𝐴) ↔ (𝜑𝑔𝐴)))
40 feq1 5988 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓:𝑇⟶ℝ ↔ 𝑔:𝑇⟶ℝ))
4139, 40imbi12d 334 . . . . . . . . . . 11 (𝑓 = 𝑔 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝑔𝐴) → 𝑔:𝑇⟶ℝ)))
4241, 33vtoclg 3255 . . . . . . . . . 10 (𝑔𝐴 → ((𝜑𝑔𝐴) → 𝑔:𝑇⟶ℝ))
4319, 37, 42sylc 65 . . . . . . . . 9 ((𝜑𝑓𝑌𝑔𝑌) → 𝑔:𝑇⟶ℝ)
4443ffvelrnda 6320 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑔𝑡) ∈ ℝ)
459simprbi 480 . . . . . . . . . . 11 (𝑓𝑌 → ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1))
46453ad2ant2 1081 . . . . . . . . . 10 ((𝜑𝑓𝑌𝑔𝑌) → ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1))
4746r19.21bi 2927 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1))
4847simpld 475 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ (𝑓𝑡))
4917simprbi 480 . . . . . . . . . . 11 (𝑔𝑌 → ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))
50493ad2ant3 1082 . . . . . . . . . 10 ((𝜑𝑓𝑌𝑔𝑌) → ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))
5150r19.21bi 2927 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))
5251simpld 475 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ (𝑔𝑡))
5336, 44, 48, 52mulge0d 10555 . . . . . . 7 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ ((𝑓𝑡) · (𝑔𝑡)))
5436, 44remulcld 10021 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → ((𝑓𝑡) · (𝑔𝑡)) ∈ ℝ)
551fvmpt2 6253 . . . . . . . 8 ((𝑡𝑇 ∧ ((𝑓𝑡) · (𝑔𝑡)) ∈ ℝ) → (𝐻𝑡) = ((𝑓𝑡) · (𝑔𝑡)))
5635, 54, 55syl2anc 692 . . . . . . 7 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝐻𝑡) = ((𝑓𝑡) · (𝑔𝑡)))
5753, 56breqtrrd 4646 . . . . . 6 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ (𝐻𝑡))
58 1red 10006 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 1 ∈ ℝ)
5947simprd 479 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑓𝑡) ≤ 1)
6051simprd 479 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑔𝑡) ≤ 1)
6136, 58, 44, 58, 48, 52, 59, 60lemul12ad 10917 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → ((𝑓𝑡) · (𝑔𝑡)) ≤ (1 · 1))
62 1t1e1 11126 . . . . . . . 8 (1 · 1) = 1
6361, 62syl6breq 4659 . . . . . . 7 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → ((𝑓𝑡) · (𝑔𝑡)) ≤ 1)
6456, 63eqbrtrd 4640 . . . . . 6 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝐻𝑡) ≤ 1)
6557, 64jca 554 . . . . 5 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
6665ex 450 . . . 4 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
6730, 66ralrimi 2952 . . 3 ((𝜑𝑓𝑌𝑔𝑌) → ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
68 nfmpt1 4712 . . . . . . 7 𝑡(𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
691, 68nfcxfr 2759 . . . . . 6 𝑡𝐻
7069nfeq2 2776 . . . . 5 𝑡 = 𝐻
71 fveq1 6152 . . . . . . 7 ( = 𝐻 → (𝑡) = (𝐻𝑡))
7271breq2d 4630 . . . . . 6 ( = 𝐻 → (0 ≤ (𝑡) ↔ 0 ≤ (𝐻𝑡)))
7371breq1d 4628 . . . . . 6 ( = 𝐻 → ((𝑡) ≤ 1 ↔ (𝐻𝑡) ≤ 1))
7472, 73anbi12d 746 . . . . 5 ( = 𝐻 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
7570, 74ralbid 2978 . . . 4 ( = 𝐻 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
7675elrab 3350 . . 3 (𝐻 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↔ (𝐻𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
7722, 67, 76sylanbrc 697 . 2 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
7877, 8syl6eleqr 2709 1 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wnf 1705  wcel 1987  wral 2907  {crab 2911   class class class wbr 4618  cmpt 4678  wf 5848  cfv 5852  (class class class)co 6610  cr 9886  0cc0 9887  1c1 9888   · cmul 9892  cle 10026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220
This theorem is referenced by:  stoweidlem48  39593  stoweidlem51  39596
  Copyright terms: Public domain W3C validator