MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structtocusgr Structured version   Visualization version   GIF version

Theorem structtocusgr 26323
Description: Any (extensible) structure with a base set can be made a complete simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021.) (Revised by AV, 17-Nov-2021.)
Hypotheses
Ref Expression
structtousgr.p 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (#‘𝑥) = 2}
structtousgr.s (𝜑𝑆 Struct 𝑋)
structtousgr.g 𝐺 = (𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)
structtousgr.b (𝜑 → (Base‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
structtocusgr (𝜑𝐺 ∈ ComplUSGraph)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem structtocusgr
Dummy variables 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 structtousgr.p . . 3 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (#‘𝑥) = 2}
2 structtousgr.s . . 3 (𝜑𝑆 Struct 𝑋)
3 structtousgr.g . . 3 𝐺 = (𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)
4 structtousgr.b . . 3 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
51, 2, 3, 4structtousgr 26322 . 2 (𝜑𝐺 ∈ USGraph )
6 simpr 477 . . . . 5 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (Vtx‘𝐺))
7 eldifi 3724 . . . . . . . 8 (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ (Vtx‘𝐺))
86, 7anim12ci 590 . . . . . . 7 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)))
9 eldifsni 4311 . . . . . . . 8 (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛𝑣)
109adantl 482 . . . . . . 7 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛𝑣)
11 fvexd 6190 . . . . . . . . 9 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (Base‘𝑆) ∈ V)
123fveq2i 6181 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩))
13 eqid 2620 . . . . . . . . . . . . . . 15 (.ef‘ndx) = (.ef‘ndx)
14 fvex 6188 . . . . . . . . . . . . . . . 16 (Base‘𝑆) ∈ V
151cusgrexilem1 26316 . . . . . . . . . . . . . . . 16 ((Base‘𝑆) ∈ V → ( I ↾ 𝑃) ∈ V)
1614, 15mp1i 13 . . . . . . . . . . . . . . 15 (𝜑 → ( I ↾ 𝑃) ∈ V)
1713, 2, 4, 16setsvtx 25908 . . . . . . . . . . . . . 14 (𝜑 → (Vtx‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)) = (Base‘𝑆))
1812, 17syl5eq 2666 . . . . . . . . . . . . 13 (𝜑 → (Vtx‘𝐺) = (Base‘𝑆))
1918eleq2d 2685 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (Vtx‘𝐺) ↔ 𝑣 ∈ (Base‘𝑆)))
2019biimpd 219 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (Vtx‘𝐺) → 𝑣 ∈ (Base‘𝑆)))
2120imp 445 . . . . . . . . . 10 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (Base‘𝑆))
2221adantr 481 . . . . . . . . 9 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑣 ∈ (Base‘𝑆))
2318difeq1d 3719 . . . . . . . . . . . . 13 (𝜑 → ((Vtx‘𝐺) ∖ {𝑣}) = ((Base‘𝑆) ∖ {𝑣}))
2423eleq2d 2685 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) ↔ 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})))
2524biimpd 219 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})))
2625adantr 481 . . . . . . . . . 10 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})))
2726imp 445 . . . . . . . . 9 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣}))
281cusgrexilem2 26319 . . . . . . . . 9 ((((Base‘𝑆) ∈ V ∧ 𝑣 ∈ (Base‘𝑆)) ∧ 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
2911, 22, 27, 28syl21anc 1323 . . . . . . . 8 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
30 edgval 25922 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
313fveq2i 6181 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩))
3213, 2, 4, 16setsiedg 25909 . . . . . . . . . . . . 13 (𝜑 → (iEdg‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)) = ( I ↾ 𝑃))
3331, 32syl5eq 2666 . . . . . . . . . . . 12 (𝜑 → (iEdg‘𝐺) = ( I ↾ 𝑃))
3433rneqd 5342 . . . . . . . . . . 11 (𝜑 → ran (iEdg‘𝐺) = ran ( I ↾ 𝑃))
3530, 34syl5eq 2666 . . . . . . . . . 10 (𝜑 → (Edg‘𝐺) = ran ( I ↾ 𝑃))
3635rexeqdv 3140 . . . . . . . . 9 (𝜑 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒))
3736ad2antrr 761 . . . . . . . 8 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒))
3829, 37mpbird 247 . . . . . . 7 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒)
395elexd 3209 . . . . . . . . 9 (𝜑𝐺 ∈ V)
4039ad2antrr 761 . . . . . . . 8 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝐺 ∈ V)
41 eqid 2620 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
42 eqid 2620 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
4341, 42nbgrel 26219 . . . . . . . 8 (𝐺 ∈ V → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛𝑣 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒)))
4440, 43syl 17 . . . . . . 7 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛𝑣 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒)))
458, 10, 38, 44mpbir3and 1243 . . . . . 6 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛 ∈ (𝐺 NeighbVtx 𝑣))
4645ralrimiva 2963 . . . . 5 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
4739adantr 481 . . . . . 6 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → 𝐺 ∈ V)
4841uvtxael 26269 . . . . . 6 (𝐺 ∈ V → (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ (Vtx‘𝐺) ∧ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))))
4947, 48syl 17 . . . . 5 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ (Vtx‘𝐺) ∧ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))))
506, 46, 49mpbir2and 956 . . . 4 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (UnivVtx‘𝐺))
5150ralrimiva 2963 . . 3 (𝜑 → ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺))
5241iscplgr 26291 . . . 4 (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺)))
5339, 52syl 17 . . 3 (𝜑 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺)))
5451, 53mpbird 247 . 2 (𝜑𝐺 ∈ ComplGraph)
55 iscusgr 26295 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
565, 54, 55sylanbrc 697 1 (𝜑𝐺 ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  {crab 2913  Vcvv 3195  cdif 3564  wss 3567  𝒫 cpw 4149  {csn 4168  {cpr 4170  cop 4174   class class class wbr 4644   I cid 5013  dom cdm 5104  ran crn 5105  cres 5106  cfv 5876  (class class class)co 6635  2c2 11055  #chash 13100   Struct cstr 15834  ndxcnx 15835   sSet csts 15836  Basecbs 15838  .efcedgf 25848  Vtxcvtx 25855  iEdgciedg 25856  Edgcedg 25920   USGraph cusgr 26025   NeighbVtx cnbgr 26205  UnivVtxcuvtxa 26206  ComplGraphccplgr 26207  ComplUSGraphccusgr 26208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-fz 12312  df-hash 13101  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-edgf 25849  df-vtx 25857  df-iedg 25858  df-edg 25921  df-usgr 26027  df-nbgr 26209  df-uvtxa 26211  df-cplgr 26212  df-cusgr 26213
This theorem is referenced by:  cffldtocusgr  26324
  Copyright terms: Public domain W3C validator