Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrunb3 Structured version   Visualization version   GIF version

Theorem supxrunb3 41692
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
supxrunb3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem supxrunb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 peano2re 10813 . . . . . . . . 9 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ)
21adantl 484 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → (𝑤 + 1) ∈ ℝ)
3 simpl 485 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
4 breq1 5069 . . . . . . . . . 10 (𝑥 = (𝑤 + 1) → (𝑥𝑦 ↔ (𝑤 + 1) ≤ 𝑦))
54rexbidv 3297 . . . . . . . . 9 (𝑥 = (𝑤 + 1) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦))
65rspcva 3621 . . . . . . . 8 (((𝑤 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
72, 3, 6syl2anc 586 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
87adantll 712 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
9 nfv 1915 . . . . . . . . 9 𝑦 𝐴 ⊆ ℝ*
10 nfcv 2977 . . . . . . . . . 10 𝑦
11 nfre1 3306 . . . . . . . . . 10 𝑦𝑦𝐴 𝑥𝑦
1210, 11nfralw 3225 . . . . . . . . 9 𝑦𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦
139, 12nfan 1900 . . . . . . . 8 𝑦(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
14 nfv 1915 . . . . . . . 8 𝑦 𝑤 ∈ ℝ
1513, 14nfan 1900 . . . . . . 7 𝑦((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ)
16 simp1r 1194 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 ∈ ℝ)
17 rexr 10687 . . . . . . . . . . 11 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
1816, 17syl 17 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 ∈ ℝ*)
191rexrd 10691 . . . . . . . . . . 11 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ*)
2016, 19syl 17 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → (𝑤 + 1) ∈ ℝ*)
21 simp1l 1193 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝐴 ⊆ ℝ*)
22 simp2 1133 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑦𝐴)
23 ssel2 3962 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
2421, 22, 23syl2anc 586 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑦 ∈ ℝ*)
2516ltp1d 11570 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 < (𝑤 + 1))
26 simp3 1134 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → (𝑤 + 1) ≤ 𝑦)
2718, 20, 24, 25, 26xrltletrd 12555 . . . . . . . . 9 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 < 𝑦)
28273exp 1115 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (𝑦𝐴 → ((𝑤 + 1) ≤ 𝑦𝑤 < 𝑦)))
2928adantlr 713 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → (𝑦𝐴 → ((𝑤 + 1) ≤ 𝑦𝑤 < 𝑦)))
3015, 29reximdai 3311 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → (∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑤 < 𝑦))
318, 30mpd 15 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑤 < 𝑦)
3231ralrimiva 3182 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦)
3332ex 415 . . 3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦))
34 breq1 5069 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 < 𝑦𝑥 < 𝑦))
3534rexbidv 3297 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑤 < 𝑦 ↔ ∃𝑦𝐴 𝑥 < 𝑦))
3635cbvralvw 3449 . . . . . 6 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
3736biimpi 218 . . . . 5 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
38 nfv 1915 . . . . . . 7 𝑥 𝐴 ⊆ ℝ*
39 nfra1 3219 . . . . . . 7 𝑥𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦
4038, 39nfan 1900 . . . . . 6 𝑥(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
41 simpll 765 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → 𝐴 ⊆ ℝ*)
42 simpr 487 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
43 rspa 3206 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥 < 𝑦)
4443adantll 712 . . . . . . . . 9 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥 < 𝑦)
45 rexr 10687 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4645ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ*)
4723adantr 483 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
4847adantllr 717 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
49 simpr 487 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
5046, 48, 49xrltled 12544 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
5150ex 415 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦𝑥𝑦))
5251reximdva 3274 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
5352adantlr 713 . . . . . . . . 9 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
5444, 53mpd 15 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥𝑦)
55 simpr 487 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 𝑥𝑦)
5641, 42, 54, 55syl21anc 835 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥𝑦)
5756ex 415 . . . . . 6 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → (𝑥 ∈ ℝ → ∃𝑦𝐴 𝑥𝑦))
5840, 57ralrimi 3216 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
5937, 58sylan2 594 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
6059ex 415 . . 3 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6133, 60impbid 214 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦))
62 supxrunb2 12714 . 2 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
6361, 62bitrd 281 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  wss 3936   class class class wbr 5066  (class class class)co 7156  supcsup 8904  cr 10536  1c1 10538   + caddc 10540  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873
This theorem is referenced by:  limsuppnfdlem  42002
  Copyright terms: Public domain W3C validator