Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo1ne0 Structured version   Visualization version   GIF version

Theorem tendo1ne0 36433
Description: The identity (unity) is not equal to the zero trace-preserving endomorphism. (Contributed by NM, 8-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b 𝐵 = (Base‘𝐾)
tendoid0.h 𝐻 = (LHyp‘𝐾)
tendoid0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoid0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoid0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendo1ne0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 𝑂)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝐸(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendo1ne0
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . 3 𝐵 = (Base‘𝐾)
2 tendoid0.h . . 3 𝐻 = (LHyp‘𝐾)
3 tendoid0.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3cdlemftr0 36173 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
5 simp3 1083 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) → 𝑔 ≠ ( I ↾ 𝐵))
6 fveq1 6228 . . . . . . . 8 (( I ↾ 𝑇) = 𝑂 → (( I ↾ 𝑇)‘𝑔) = (𝑂𝑔))
76adantl 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (( I ↾ 𝑇)‘𝑔) = (𝑂𝑔))
8 simpl2 1085 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → 𝑔𝑇)
9 fvresi 6480 . . . . . . . 8 (𝑔𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔)
108, 9syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (( I ↾ 𝑇)‘𝑔) = 𝑔)
11 tendoid0.o . . . . . . . . 9 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1211, 1tendo02 36392 . . . . . . . 8 (𝑔𝑇 → (𝑂𝑔) = ( I ↾ 𝐵))
138, 12syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (𝑂𝑔) = ( I ↾ 𝐵))
147, 10, 133eqtr3d 2693 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → 𝑔 = ( I ↾ 𝐵))
1514ex 449 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) → (( I ↾ 𝑇) = 𝑂𝑔 = ( I ↾ 𝐵)))
1615necon3d 2844 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) → (𝑔 ≠ ( I ↾ 𝐵) → ( I ↾ 𝑇) ≠ 𝑂))
175, 16mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) → ( I ↾ 𝑇) ≠ 𝑂)
1817rexlimdv3a 3062 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵) → ( I ↾ 𝑇) ≠ 𝑂))
194, 18mpd 15 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  cmpt 4762   I cid 5052  cres 5145  cfv 5926  Basecbs 15904  HLchlt 34955  LHypclh 35588  LTrncltrn 35705  TEndoctendo 36357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-riotaBAD 34557
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-undef 7444  df-map 7901  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764
This theorem is referenced by:  cdleml9  36589  erngdvlem4  36596  erng1r  36600  erngdvlem4-rN  36604  dvalveclem  36631  dvheveccl  36718  dihord6apre  36862  dihatlat  36940
  Copyright terms: Public domain W3C validator