Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvalveclem Structured version   Visualization version   GIF version

Theorem dvalveclem 35794
 Description: Lemma for dvalvec 35795. (Contributed by NM, 11-Oct-2013.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvalvec.h 𝐻 = (LHyp‘𝐾)
dvalvec.v 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvalveclem.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvalveclem.a + = (+g𝑈)
dvalveclem.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvalveclem.d 𝐷 = (Scalar‘𝑈)
dvalveclem.b 𝐵 = (Base‘𝐾)
dvalveclem.p = (+g𝐷)
dvalveclem.m × = (.r𝐷)
dvalveclem.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvalveclem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)

Proof of Theorem dvalveclem
Dummy variables 𝑡 𝑓 𝑎 𝑏 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvalvec.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvalveclem.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvalvec.v . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
4 eqid 2621 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
51, 2, 3, 4dvavbase 35781 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = 𝑇)
65eqcomd 2627 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = (Base‘𝑈))
7 dvalveclem.a . . . 4 + = (+g𝑈)
87a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝑈))
9 dvalveclem.d . . . 4 𝐷 = (Scalar‘𝑈)
109a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = (Scalar‘𝑈))
11 dvalveclem.s . . . 4 · = ( ·𝑠𝑈)
1211a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → · = ( ·𝑠𝑈))
13 dvalveclem.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
14 eqid 2621 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
151, 13, 3, 9, 14dvabase 35775 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
1615eqcomd 2627 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
17 dvalveclem.p . . . 4 = (+g𝐷)
1817a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g𝐷))
19 dvalveclem.m . . . 4 × = (.r𝐷)
2019a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → × = (.r𝐷))
211, 2, 13tendoidcl 35537 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
2221, 16eleqtrd 2700 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷))
23 dvalveclem.b . . . . . . . 8 𝐵 = (Base‘𝐾)
24 eqid 2621 . . . . . . . 8 (𝑓𝑇 ↦ ( I ↾ 𝐵)) = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2523, 1, 2, 13, 24tendo1ne0 35596 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ (𝑓𝑇 ↦ ( I ↾ 𝐵)))
26 eqid 2621 . . . . . . . . . 10 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
271, 26, 3, 9dvasca 35774 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
2827fveq2d 6152 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = (0g‘((EDRing‘𝐾)‘𝑊)))
29 eqid 2621 . . . . . . . . 9 (0g‘((EDRing‘𝐾)‘𝑊)) = (0g‘((EDRing‘𝐾)‘𝑊))
3023, 1, 2, 26, 24, 29erng0g 35762 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g‘((EDRing‘𝐾)‘𝑊)) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
3128, 30eqtrd 2655 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
3225, 31neeqtrrd 2864 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ (0g𝐷))
3321, 21jca 554 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸))
341, 2, 13, 3, 9, 19dvamulr 35780 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)))
3533, 34mpdan 701 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)))
36 f1oi 6131 . . . . . . . 8 ( I ↾ 𝑇):𝑇1-1-onto𝑇
37 f1of 6094 . . . . . . . 8 (( I ↾ 𝑇):𝑇1-1-onto𝑇 → ( I ↾ 𝑇):𝑇𝑇)
38 fcoi2 6036 . . . . . . . 8 (( I ↾ 𝑇):𝑇𝑇 → (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇))
3936, 37, 38mp2b 10 . . . . . . 7 (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇)
4035, 39syl6eq 2671 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇))
4122, 32, 403jca 1240 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)))
421, 26erngdv 35761 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
4327, 42eqeltrd 2698 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
44 eqid 2621 . . . . . . 7 (0g𝐷) = (0g𝐷)
45 eqid 2621 . . . . . . 7 (1r𝐷) = (1r𝐷)
4614, 19, 44, 45drngid2 18684 . . . . . 6 (𝐷 ∈ DivRing → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
4743, 46syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
4841, 47mpbid 222 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = ( I ↾ 𝑇))
4948eqcomd 2627 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
50 drngring 18675 . . . 4 (𝐷 ∈ DivRing → 𝐷 ∈ Ring)
5143, 50syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
521, 3dvaabl 35793 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Abel)
53 ablgrp 18119 . . . 4 (𝑈 ∈ Abel → 𝑈 ∈ Grp)
5452, 53syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)
551, 2, 13, 3, 11dvavsca 35785 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇)) → (𝑠 · 𝑡) = (𝑠𝑡))
56553impb 1257 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠 · 𝑡) = (𝑠𝑡))
571, 2, 13tendocl 35535 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠𝑡) ∈ 𝑇)
5856, 57eqeltrd 2698 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠 · 𝑡) ∈ 𝑇)
591, 2, 13tendospdi1 35789 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠‘(𝑡𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
60 simpr1 1065 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → 𝑠𝐸)
611, 2ltrnco 35487 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝑇𝑓𝑇) → (𝑡𝑓) ∈ 𝑇)
62613adant3r1 1271 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑡𝑓) ∈ 𝑇)
6360, 62jca 554 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇))
641, 2, 13, 3, 11dvavsca 35785 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
6563, 64syldan 487 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
66573adant3r3 1273 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝑡) ∈ 𝑇)
671, 2, 13tendocl 35535 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑓𝑇) → (𝑠𝑓) ∈ 𝑇)
68673adant3r2 1272 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝑓) ∈ 𝑇)
6966, 68jca 554 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠𝑡) ∈ 𝑇 ∧ (𝑠𝑓) ∈ 𝑇))
701, 2, 3, 7dvavadd 35783 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝑇 ∧ (𝑠𝑓) ∈ 𝑇)) → ((𝑠𝑡) + (𝑠𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
7169, 70syldan 487 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠𝑡) + (𝑠𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
7259, 65, 713eqtr4d 2665 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = ((𝑠𝑡) + (𝑠𝑓)))
731, 2, 3, 7dvavadd 35783 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝑇𝑓𝑇)) → (𝑡 + 𝑓) = (𝑡𝑓))
74733adantr1 1218 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑡 + 𝑓) = (𝑡𝑓))
7574oveq2d 6620 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡 + 𝑓)) = (𝑠 · (𝑡𝑓)))
76553adantr3 1220 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · 𝑡) = (𝑠𝑡))
771, 2, 13, 3, 11dvavsca 35785 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
78773adantr2 1219 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
7976, 78oveq12d 6622 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ((𝑠𝑡) + (𝑠𝑓)))
8072, 75, 793eqtr4d 2665 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡 + 𝑓)) = ((𝑠 · 𝑡) + (𝑠 · 𝑓)))
811, 2, 13, 3, 9, 17dvaplusgv 35778 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡)‘𝑓) = ((𝑠𝑓) ∘ (𝑡𝑓)))
821, 2, 13, 3, 9, 17dvafplusg 35776 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
83823ad2ant1 1080 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
8483oveqd 6621 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 𝑡) = (𝑠(𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))𝑡))
85 eqid 2621 . . . . . . . . 9 (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
861, 2, 13, 85tendoplcl 35549 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠(𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))𝑡) ∈ 𝐸)
8784, 86eqeltrd 2698 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 𝑡) ∈ 𝐸)
88873adant3r3 1273 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 𝑡) ∈ 𝐸)
89 simpr3 1067 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → 𝑓𝑇)
9088, 89jca 554 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) ∈ 𝐸𝑓𝑇))
911, 2, 13, 3, 11dvavsca 35785 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 𝑡)‘𝑓))
9290, 91syldan 487 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 𝑡)‘𝑓))
93773adantr2 1219 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
941, 2, 13, 3, 11dvavsca 35785 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓𝑇)) → (𝑡 · 𝑓) = (𝑡𝑓))
95943adantr1 1218 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑡 · 𝑓) = (𝑡𝑓))
9693, 95oveq12d 6622 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ((𝑠𝑓) + (𝑡𝑓)))
97673adant3r2 1272 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝑓) ∈ 𝑇)
981, 2, 13tendospcl 35787 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑓𝑇) → (𝑡𝑓) ∈ 𝑇)
99983adant3r1 1271 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑡𝑓) ∈ 𝑇)
10097, 99jca 554 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑓) ∈ 𝑇 ∧ (𝑡𝑓) ∈ 𝑇))
1011, 2, 3, 7dvavadd 35783 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑓) ∈ 𝑇 ∧ (𝑡𝑓) ∈ 𝑇)) → ((𝑠𝑓) + (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
102100, 101syldan 487 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑓) + (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
10396, 102eqtrd 2655 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
10481, 92, 1033eqtr4d 2665 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 · 𝑓) + (𝑡 · 𝑓)))
1051, 2, 13tendospass 35788 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡)‘𝑓) = (𝑠‘(𝑡𝑓)))
1061, 13tendococl 35540 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
1071063adant3r3 1273 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝑡) ∈ 𝐸)
108107, 89jca 554 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) ∈ 𝐸𝑓𝑇))
1091, 2, 13, 3, 11dvavsca 35785 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = ((𝑠𝑡)‘𝑓))
110108, 109syldan 487 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = ((𝑠𝑡)‘𝑓))
111 simpr1 1065 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → 𝑠𝐸)
112111, 99jca 554 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇))
1131, 2, 13, 3, 11dvavsca 35785 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
114112, 113syldan 487 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
115105, 110, 1143eqtr4d 2665 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = (𝑠 · (𝑡𝑓)))
1161, 2, 13, 3, 9, 19dvamulr 35780 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠 × 𝑡) = (𝑠𝑡))
1171163adantr3 1220 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 × 𝑡) = (𝑠𝑡))
118117oveq1d 6619 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 × 𝑡) · 𝑓) = ((𝑠𝑡) · 𝑓))
11995oveq2d 6620 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · (𝑡 · 𝑓)) = (𝑠 · (𝑡𝑓)))
120115, 118, 1193eqtr4d 2665 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 × 𝑡) · 𝑓) = (𝑠 · (𝑡 · 𝑓)))
12121anim1i 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) ∈ 𝐸𝑠𝑇))
1221, 2, 13, 3, 11dvavsca 35785 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠𝑇)) → (( I ↾ 𝑇) · 𝑠) = (( I ↾ 𝑇)‘𝑠))
123121, 122syldan 487 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) · 𝑠) = (( I ↾ 𝑇)‘𝑠))
124 fvresi 6393 . . . . 5 (𝑠𝑇 → (( I ↾ 𝑇)‘𝑠) = 𝑠)
125124adantl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇)‘𝑠) = 𝑠)
126123, 125eqtrd 2655 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) · 𝑠) = 𝑠)
1276, 8, 10, 12, 16, 18, 20, 49, 51, 54, 58, 80, 104, 120, 126islmodd 18790 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
1289islvec 19023 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ 𝐷 ∈ DivRing))
129127, 43, 128sylanbrc 697 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ↦ cmpt 4673   I cid 4984   ↾ cres 5076   ∘ ccom 5078  ⟶wf 5843  –1-1-onto→wf1o 5846  ‘cfv 5847  (class class class)co 6604   ↦ cmpt2 6606  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021  Grpcgrp 17343  Abelcabl 18115  1rcur 18422  Ringcrg 18468  DivRingcdr 18668  LModclmod 18784  LVecclvec 19021  HLchlt 34117  LHypclh 34750  LTrncltrn 34867  TEndoctendo 35520  EDRingcedring 35521  DVecAcdveca 35770 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-riotaBAD 33719 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-undef 7344  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-0g 16023  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-drng 18670  df-lmod 18786  df-lvec 19022  df-oposet 33943  df-ol 33945  df-oml 33946  df-covers 34033  df-ats 34034  df-atl 34065  df-cvlat 34089  df-hlat 34118  df-llines 34264  df-lplanes 34265  df-lvols 34266  df-lines 34267  df-psubsp 34269  df-pmap 34270  df-padd 34562  df-lhyp 34754  df-laut 34755  df-ldil 34870  df-ltrn 34871  df-trl 34926  df-tgrp 35511  df-tendo 35523  df-edring 35525  df-dveca 35771 This theorem is referenced by:  dvalvec  35795
 Copyright terms: Public domain W3C validator