Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlatn0 Structured version   Visualization version   GIF version

Theorem trlatn0 34276
Description: The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013.)
Hypotheses
Ref Expression
trl0a.z 0 = (0.‘𝐾)
trl0a.a 𝐴 = (Atoms‘𝐾)
trl0a.h 𝐻 = (LHyp‘𝐾)
trl0a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trl0a.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlatn0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ↔ (𝑅𝐹) ≠ 0 ))

Proof of Theorem trlatn0
StepHypRef Expression
1 hlatl 33464 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21ad3antrrr 761 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ∈ 𝐴) → 𝐾 ∈ AtLat)
3 trl0a.z . . . . 5 0 = (0.‘𝐾)
4 trl0a.a . . . . 5 𝐴 = (Atoms‘𝐾)
53, 4atn0 33412 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅𝐹) ∈ 𝐴) → (𝑅𝐹) ≠ 0 )
62, 5sylancom 697 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ∈ 𝐴) → (𝑅𝐹) ≠ 0 )
76ex 448 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ≠ 0 ))
8 trl0a.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 trl0a.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trl0a.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
113, 4, 8, 9, 10trlator0 34275 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ∨ (𝑅𝐹) = 0 ))
1211ord 390 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (¬ (𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) = 0 ))
1312necon1ad 2794 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ≠ 0 → (𝑅𝐹) ∈ 𝐴))
147, 13impbid 200 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ↔ (𝑅𝐹) ≠ 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wne 2775  cfv 5786  0.cp0 16802  Atomscatm 33367  AtLatcal 33368  HLchlt 33454  LHypclh 34087  LTrncltrn 34204  trLctrl 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-map 7719  df-preset 16693  df-poset 16711  df-plt 16723  df-lub 16739  df-glb 16740  df-join 16741  df-meet 16742  df-p0 16804  df-p1 16805  df-lat 16811  df-clat 16873  df-oposet 33280  df-ol 33282  df-oml 33283  df-covers 33370  df-ats 33371  df-atl 33402  df-cvlat 33426  df-hlat 33455  df-lhyp 34091  df-laut 34092  df-ldil 34207  df-ltrn 34208  df-trl 34263
This theorem is referenced by:  trlid0b  34282  cdlemg12e  34752  trlcoat  34828
  Copyright terms: Public domain W3C validator