MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgruspgr Structured version   Visualization version   GIF version

Theorem usgruspgr 26293
Description: A simple graph is a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.)
Assertion
Ref Expression
usgruspgr (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)

Proof of Theorem usgruspgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2760 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2isusgr 26268 . . . 4 (𝐺 ∈ USGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
4 2re 11302 . . . . . . . 8 2 ∈ ℝ
54eqlei2 10360 . . . . . . 7 ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2)
65a1i 11 . . . . . 6 (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2))
76ss2rabi 3825 . . . . 5 {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
8 f1ss 6267 . . . . 5 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
97, 8mpan2 709 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
103, 9syl6bi 243 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
111, 2isuspgr 26267 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1210, 11sylibrd 249 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph))
1312pm2.43i 52 1 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  {crab 3054  cdif 3712  wss 3715  c0 4058  𝒫 cpw 4302  {csn 4321   class class class wbr 4804  dom cdm 5266  1-1wf1 6046  cfv 6049  cle 10287  2c2 11282  chash 13331  Vtxcvtx 26094  iEdgciedg 26095  USPGraphcuspgr 26263  USGraphcusgr 26264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-i2m1 10216  ax-1ne0 10217  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-2 11291  df-uspgr 26265  df-usgr 26266
This theorem is referenced by:  usgrumgruspgr  26295  usgruspgrb  26296  usgrupgr  26297  usgrislfuspgr  26299  usgredg2vtxeu  26333  usgredgedg  26342  usgredgleord  26345  vtxdusgrfvedg  26618  usgrn2cycl  26933  wlksnfi  27046  wlksnwwlknvbij  27047  rusgrnumwwlk  27118  clwlksfoclwwlkOLD  27238  clwlksf1clwwlkOLD  27244  clwlksndivn  27252  clwlknon2num  27550  numclwlk1lem2  27552
  Copyright terms: Public domain W3C validator