Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2 Structured version   Visualization version   GIF version

Theorem numclwlk1lem2 27350
 Description: There is a bijection between the set of closed walks (having a fixed length greater than 2 and starting at a fixed vertex) with the last but 2 vertex identical with the first (and therefore last) vertex and the set of closed walks (having a fixed length less by 2 and starting at the same vertex) and the neighbors of this vertex. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 6-Mar-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
numclwlk1lem2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑤,𝐹,𝑓   𝐶,𝑓   𝑓,𝐹   𝑓,𝐺   𝑓,𝑁   𝑓,𝑋
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)   𝑉(𝑓)

Proof of Theorem numclwlk1lem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ovex 6718 . . 3 (𝑋𝐶𝑁) ∈ V
2 nfcv 2793 . . . . 5 𝑤𝑋
3 extwwlkfab.c . . . . . 6 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
4 nfcv 2793 . . . . . . 7 𝑤𝑉
5 nfcv 2793 . . . . . . 7 𝑤(ℤ‘2)
6 nfrab1 3152 . . . . . . 7 𝑤{𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}
74, 5, 6nfmpt2 6766 . . . . . 6 𝑤(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
83, 7nfcxfr 2791 . . . . 5 𝑤𝐶
9 nfcv 2793 . . . . 5 𝑤𝑁
102, 8, 9nfov 6716 . . . 4 𝑤(𝑋𝐶𝑁)
1110mptexgf 6526 . . 3 ((𝑋𝐶𝑁) ∈ V → (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩) ∈ V)
121, 11ax-mp 5 . 2 (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩) ∈ V
13 extwwlkfab.v . . 3 𝑉 = (Vtx‘𝐺)
14 extwwlkfab.f . . 3 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
15 nfcv 2793 . . . 4 𝑢(𝑋𝐶𝑁)
16 nfcv 2793 . . . 4 𝑢⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩
17 nfcv 2793 . . . 4 𝑤⟨(𝑢 substr ⟨0, (𝑁 − 2)⟩), (𝑢‘(𝑁 − 1))⟩
18 oveq1 6697 . . . . 5 (𝑤 = 𝑢 → (𝑤 substr ⟨0, (𝑁 − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩))
19 fveq1 6228 . . . . 5 (𝑤 = 𝑢 → (𝑤‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1)))
2018, 19opeq12d 4441 . . . 4 (𝑤 = 𝑢 → ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩ = ⟨(𝑢 substr ⟨0, (𝑁 − 2)⟩), (𝑢‘(𝑁 − 1))⟩)
2110, 15, 16, 17, 20cbvmptf 4781 . . 3 (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩) = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 substr ⟨0, (𝑁 − 2)⟩), (𝑢‘(𝑁 − 1))⟩)
2213, 3, 14, 21numclwlk1lem2f1o 27349 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)))
23 f1oeq1 6165 . . 3 (𝑓 = (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩) → (𝑓:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋))))
2423spcegv 3325 . 2 ((𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩) ∈ V → ((𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋))))
2512, 22, 24mpsyl 68 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1054   = wceq 1523  ∃wex 1744   ∈ wcel 2030  {crab 2945  Vcvv 3231  ⟨cop 4216   ↦ cmpt 4762   × cxp 5141  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692  0cc0 9974  1c1 9975   − cmin 10304  2c2 11108  3c3 11109  ℤ≥cuz 11725   substr csubstr 13327  Vtxcvtx 25919  USGraphcusgr 26089   NeighbVtx cnbgr 26269  ClWWalksNOncclwwlknon 27060 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335  df-s2 13639  df-edg 25985  df-upgr 26022  df-umgr 26023  df-usgr 26091  df-nbgr 26270  df-wwlks 26778  df-wwlksn 26779  df-clwwlk 26950  df-clwwlkn 26983  df-clwwlknon 27061 This theorem is referenced by:  numclwwlk1  27351
 Copyright terms: Public domain W3C validator