MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlk Structured version   Visualization version   GIF version

Theorem rusgrnumwwlk 27754
Description: In a 𝐾-regular graph, the number of walks of a fixed length 𝑁 from a fixed vertex is 𝐾 to the power of 𝑁. By definition, (𝑁 WWalksN 𝐺) is the set of walks (as words) with length 𝑁, and (𝑃𝐿𝑁) is the number of walks with length 𝑁 starting at the vertex 𝑃. Because of the 𝐾-regularity, a walk can be continued in 𝐾 different ways at the end vertex of the walk, and this repeated 𝑁 times.

This theorem even holds for 𝑁 = 0: in this case, the walk consists of only one vertex 𝑃, so the number of walks of length 𝑁 = 0 starting with 𝑃 is (𝐾↑0) = 1. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.)

Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlk ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑃𝐿𝑁) = (𝐾𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑃,𝑛,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑤,𝐾
Allowed substitution hints:   𝐾(𝑣,𝑛)   𝐿(𝑤,𝑣,𝑛)

Proof of Theorem rusgrnumwwlk
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7164 . . . . . . . 8 (𝑥 = 0 → (𝑃𝐿𝑥) = (𝑃𝐿0))
2 oveq2 7164 . . . . . . . 8 (𝑥 = 0 → (𝐾𝑥) = (𝐾↑0))
31, 2eqeq12d 2837 . . . . . . 7 (𝑥 = 0 → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿0) = (𝐾↑0)))
43imbi2d 343 . . . . . 6 (𝑥 = 0 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = (𝐾↑0))))
5 oveq2 7164 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝐿𝑥) = (𝑃𝐿𝑦))
6 oveq2 7164 . . . . . . . 8 (𝑥 = 𝑦 → (𝐾𝑥) = (𝐾𝑦))
75, 6eqeq12d 2837 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿𝑦) = (𝐾𝑦)))
87imbi2d 343 . . . . . 6 (𝑥 = 𝑦 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑦) = (𝐾𝑦))))
9 oveq2 7164 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑃𝐿𝑥) = (𝑃𝐿(𝑦 + 1)))
10 oveq2 7164 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝐾𝑥) = (𝐾↑(𝑦 + 1)))
119, 10eqeq12d 2837 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))
1211imbi2d 343 . . . . . 6 (𝑥 = (𝑦 + 1) → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))))
13 oveq2 7164 . . . . . . . 8 (𝑥 = 𝑁 → (𝑃𝐿𝑥) = (𝑃𝐿𝑁))
14 oveq2 7164 . . . . . . . 8 (𝑥 = 𝑁 → (𝐾𝑥) = (𝐾𝑁))
1513, 14eqeq12d 2837 . . . . . . 7 (𝑥 = 𝑁 → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿𝑁) = (𝐾𝑁)))
1615imbi2d 343 . . . . . 6 (𝑥 = 𝑁 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑁) = (𝐾𝑁))))
17 rusgrusgr 27346 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
18 usgruspgr 26963 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
1917, 18syl 17 . . . . . . . 8 (𝐺 RegUSGraph 𝐾𝐺 ∈ USPGraph)
20 simpr 487 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝑃𝑉) → 𝑃𝑉)
21 rusgrnumwwlk.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
22 rusgrnumwwlk.l . . . . . . . . 9 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
2321, 22rusgrnumwwlkb0 27750 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = 1)
2419, 20, 23syl2anr 598 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = 1)
25 simpl 485 . . . . . . . . . . 11 ((𝑉 ∈ Fin ∧ 𝑃𝑉) → 𝑉 ∈ Fin)
2625, 17anim12ci 615 . . . . . . . . . 10 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2721isfusgr 27100 . . . . . . . . . 10 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2826, 27sylibr 236 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
29 simpr 487 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
30 ne0i 4300 . . . . . . . . . 10 (𝑃𝑉𝑉 ≠ ∅)
3130ad2antlr 725 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ≠ ∅)
3221frusgrnn0 27353 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
3332nn0cnd 11958 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℂ)
3428, 29, 31, 33syl3anc 1367 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 ∈ ℂ)
3534exp0d 13505 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾↑0) = 1)
3624, 35eqtr4d 2859 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = (𝐾↑0))
37 simpl 485 . . . . . . . . . . 11 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝑃𝑉))
3837anim1i 616 . . . . . . . . . 10 ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → ((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝑦 ∈ ℕ0))
39 df-3an 1085 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑦 ∈ ℕ0) ↔ ((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝑦 ∈ ℕ0))
4038, 39sylibr 236 . . . . . . . . 9 ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → (𝑉 ∈ Fin ∧ 𝑃𝑉𝑦 ∈ ℕ0))
4121, 22rusgrnumwwlks 27753 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑦 ∈ ℕ0)) → ((𝑃𝐿𝑦) = (𝐾𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))
4229, 40, 41syl2an2r 683 . . . . . . . 8 ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → ((𝑃𝐿𝑦) = (𝐾𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))
4342expcom 416 . . . . . . 7 (𝑦 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → ((𝑃𝐿𝑦) = (𝐾𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))))
4443a2d 29 . . . . . 6 (𝑦 ∈ ℕ0 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑦) = (𝐾𝑦)) → (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))))
454, 8, 12, 16, 36, 44nn0ind 12078 . . . . 5 (𝑁 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑁) = (𝐾𝑁)))
4645expd 418 . . . 4 (𝑁 ∈ ℕ0 → ((𝑉 ∈ Fin ∧ 𝑃𝑉) → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾𝑁))))
4746com12 32 . . 3 ((𝑉 ∈ Fin ∧ 𝑃𝑉) → (𝑁 ∈ ℕ0 → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾𝑁))))
48473impia 1113 . 2 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾𝑁)))
4948impcom 410 1 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑃𝐿𝑁) = (𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  {crab 3142  c0 4291   class class class wbr 5066  cfv 6355  (class class class)co 7156  cmpo 7158  Fincfn 8509  cc 10535  0cc0 10537  1c1 10538   + caddc 10540  0cn0 11898  cexp 13430  chash 13691  Vtxcvtx 26781  USPGraphcuspgr 26933  USGraphcusgr 26934  FinUSGraphcfusgr 27098   RegUSGraph crusgr 27338   WWalksN cwwlksn 27604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-rp 12391  df-xadd 12509  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-word 13863  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-vtx 26783  df-iedg 26784  df-edg 26833  df-uhgr 26843  df-ushgr 26844  df-upgr 26867  df-umgr 26868  df-uspgr 26935  df-usgr 26936  df-fusgr 27099  df-nbgr 27115  df-vtxdg 27248  df-rgr 27339  df-rusgr 27340  df-wwlks 27608  df-wwlksn 27609
This theorem is referenced by:  rusgrnumwwlkg  27755
  Copyright terms: Public domain W3C validator