MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdlfgrval Structured version   Visualization version   GIF version

Theorem vtxdlfgrval 26267
Description: The value of the vertex degree function for a loop-free graph 𝐺. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
vtxdlfgrval.v 𝑉 = (Vtx‘𝐺)
vtxdlfgrval.i 𝐼 = (iEdg‘𝐺)
vtxdlfgrval.a 𝐴 = dom 𝐼
vtxdlfgrval.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdlfgrval ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐼   𝑥,𝑈   𝑥,𝑉
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem vtxdlfgrval
StepHypRef Expression
1 vtxdlfgrval.d . . . 4 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6149 . . 3 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
3 vtxdlfgrval.v . . . . 5 𝑉 = (Vtx‘𝐺)
4 vtxdlfgrval.i . . . . 5 𝐼 = (iEdg‘𝐺)
5 vtxdlfgrval.a . . . . 5 𝐴 = dom 𝐼
63, 4, 5vtxdgval 26251 . . . 4 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
76adantl 482 . . 3 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
82, 7syl5eq 2667 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
9 eqid 2621 . . . . . . 7 {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}
104, 5, 9lfgrnloop 25915 . . . . . 6 (𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
1110adantr 481 . . . . 5 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
1211fveq2d 6152 . . . 4 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) = (#‘∅))
13 hash0 13098 . . . 4 (#‘∅) = 0
1412, 13syl6eq 2671 . . 3 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) = 0)
1514oveq2d 6620 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) = ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0))
164dmeqi 5285 . . . . . . 7 dom 𝐼 = dom (iEdg‘𝐺)
175, 16eqtri 2643 . . . . . 6 𝐴 = dom (iEdg‘𝐺)
18 fvex 6158 . . . . . . 7 (iEdg‘𝐺) ∈ V
1918dmex 7046 . . . . . 6 dom (iEdg‘𝐺) ∈ V
2017, 19eqeltri 2694 . . . . 5 𝐴 ∈ V
2120rabex 4773 . . . 4 {𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ V
22 hashxnn0 13067 . . . 4 ({𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ V → (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0*)
23 xnn0xr 11312 . . . 4 ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0* → (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ*)
2421, 22, 23mp2b 10 . . 3 (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ*
25 xaddid1 12015 . . 3 ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ* → ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0) = (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
2624, 25mp1i 13 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0) = (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
278, 15, 263eqtrd 2659 1 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3186  c0 3891  𝒫 cpw 4130  {csn 4148   class class class wbr 4613  dom cdm 5074  wf 5843  cfv 5847  (class class class)co 6604  0cc0 9880  *cxr 10017  cle 10019  2c2 11014  0*cxnn0 11307   +𝑒 cxad 11888  #chash 13057  Vtxcvtx 25774  iEdgciedg 25775  VtxDegcvtxdg 26248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-xadd 11891  df-fz 12269  df-hash 13058  df-vtxdg 26249
This theorem is referenced by:  vtxdumgrval  26268  1hevtxdg1  26288
  Copyright terms: Public domain W3C validator