MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdlfgrval Structured version   Visualization version   GIF version

Theorem vtxdlfgrval 27267
Description: The value of the vertex degree function for a loop-free graph 𝐺. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
vtxdlfgrval.v 𝑉 = (Vtx‘𝐺)
vtxdlfgrval.i 𝐼 = (iEdg‘𝐺)
vtxdlfgrval.a 𝐴 = dom 𝐼
vtxdlfgrval.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdlfgrval ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐼   𝑥,𝑈   𝑥,𝑉
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem vtxdlfgrval
StepHypRef Expression
1 vtxdlfgrval.d . . . 4 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6671 . . 3 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
3 vtxdlfgrval.v . . . . 5 𝑉 = (Vtx‘𝐺)
4 vtxdlfgrval.i . . . . 5 𝐼 = (iEdg‘𝐺)
5 vtxdlfgrval.a . . . . 5 𝐴 = dom 𝐼
63, 4, 5vtxdgval 27250 . . . 4 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
76adantl 484 . . 3 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
82, 7syl5eq 2868 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
9 eqid 2821 . . . . . . 7 {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
104, 5, 9lfgrnloop 26910 . . . . . 6 (𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
1110adantr 483 . . . . 5 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
1211fveq2d 6674 . . . 4 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) = (♯‘∅))
13 hash0 13729 . . . 4 (♯‘∅) = 0
1412, 13syl6eq 2872 . . 3 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) = 0)
1514oveq2d 7172 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0))
164dmeqi 5773 . . . . . . 7 dom 𝐼 = dom (iEdg‘𝐺)
175, 16eqtri 2844 . . . . . 6 𝐴 = dom (iEdg‘𝐺)
18 fvex 6683 . . . . . . 7 (iEdg‘𝐺) ∈ V
1918dmex 7616 . . . . . 6 dom (iEdg‘𝐺) ∈ V
2017, 19eqeltri 2909 . . . . 5 𝐴 ∈ V
2120rabex 5235 . . . 4 {𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ V
22 hashxnn0 13700 . . . 4 ({𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ V → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0*)
23 xnn0xr 11973 . . . 4 ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0* → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ*)
2421, 22, 23mp2b 10 . . 3 (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ*
25 xaddid1 12635 . . 3 ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ* → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0) = (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
2624, 25mp1i 13 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0) = (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
278, 15, 263eqtrd 2860 1 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  c0 4291  𝒫 cpw 4539  {csn 4567   class class class wbr 5066  dom cdm 5555  wf 6351  cfv 6355  (class class class)co 7156  0cc0 10537  *cxr 10674  cle 10676  2c2 11693  0*cxnn0 11968   +𝑒 cxad 12506  chash 13691  Vtxcvtx 26781  iEdgciedg 26782  VtxDegcvtxdg 27247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-xadd 12509  df-fz 12894  df-hash 13692  df-vtxdg 27248
This theorem is referenced by:  vtxdumgrval  27268  1hevtxdg1  27288
  Copyright terms: Public domain W3C validator