MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0lem1lt Structured version   Visualization version   GIF version

Theorem xnn0lem1lt 12638
Description: Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
xnn0lem1lt ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))

Proof of Theorem xnn0lem1lt
StepHypRef Expression
1 nn0lem1lt 12048 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
21adantlr 713 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
3 nn0re 11907 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
43rexrd 10691 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ*)
5 pnfge 12526 . . . . . 6 (𝑀 ∈ ℝ*𝑀 ≤ +∞)
64, 5syl 17 . . . . 5 (𝑀 ∈ ℕ0𝑀 ≤ +∞)
76ad2antrr 724 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ≤ +∞)
8 simpll 765 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
9 peano2rem 10953 . . . . 5 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
10 ltpnf 12516 . . . . 5 ((𝑀 − 1) ∈ ℝ → (𝑀 − 1) < +∞)
118, 3, 9, 104syl 19 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 − 1) < +∞)
127, 112thd 267 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ +∞ ↔ (𝑀 − 1) < +∞))
13 xnn0nnn0pnf 11981 . . . . 5 ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)
1413adantll 712 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)
1514breq2d 5078 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀𝑁𝑀 ≤ +∞))
1614breq2d 5078 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑀 − 1) < 𝑁 ↔ (𝑀 − 1) < +∞))
1712, 15, 163bitr4d 313 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
182, 17pm2.61dan 811 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114   class class class wbr 5066  (class class class)co 7156  cr 10536  1c1 10538  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cmin 10870  0cn0 11898  0*cxnn0 11968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-xnn0 11969  df-z 11983
This theorem is referenced by:  xnn01gt  30495  drngdimgt0  31016  cusgracyclt3v  32403
  Copyright terms: Public domain W3C validator