MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmax1 Structured version   Visualization version   GIF version

Theorem xrmax1 11965
Description: An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrmax1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))

Proof of Theorem xrmax1
StepHypRef Expression
1 xrleid 11943 . . . 4 (𝐴 ∈ ℝ*𝐴𝐴)
2 iffalse 4073 . . . . 5 𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
32breq2d 4635 . . . 4 𝐴𝐵 → (𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴) ↔ 𝐴𝐴))
41, 3syl5ibrcom 237 . . 3 (𝐴 ∈ ℝ* → (¬ 𝐴𝐵𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴)))
5 id 22 . . . 4 (𝐴𝐵𝐴𝐵)
6 iftrue 4070 . . . 4 (𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
75, 6breqtrrd 4651 . . 3 (𝐴𝐵𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
84, 7pm2.61d2 172 . 2 (𝐴 ∈ ℝ*𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
98adantr 481 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wcel 1987  ifcif 4064   class class class wbr 4623  *cxr 10033  cle 10035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-pre-lttri 9970  ax-pre-lttrn 9971
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040
This theorem is referenced by:  xrmaxlt  11971  xrmaxle  11973  max1  11975  limsupgre  14162  pnfnei  20964  ismbfd  23347  dvferm2lem  23687  mdegaddle  23772
  Copyright terms: Public domain W3C validator