Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > cla4ev | GIF version |
Description: Existential introduction. (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
cla4ev.1 | ⊢ A:∗ |
cla4ev.2 | ⊢ B:α |
cla4ev.3 | ⊢ [x:α = B]⊧[A = C] |
Ref | Expression |
---|---|
cla4ev | ⊢ C⊧(∃λx:α A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cla4ev.1 | . . . . 5 ⊢ A:∗ | |
2 | cla4ev.3 | . . . . 5 ⊢ [x:α = B]⊧[A = C] | |
3 | 1, 2 | eqtypi 78 | . . . 4 ⊢ C:∗ |
4 | 3 | id 25 | . . 3 ⊢ C⊧C |
5 | cla4ev.2 | . . . . 5 ⊢ B:α | |
6 | 1, 5, 2 | cl 116 | . . . 4 ⊢ ⊤⊧[(λx:α AB) = C] |
7 | 3, 6 | a1i 28 | . . 3 ⊢ C⊧[(λx:α AB) = C] |
8 | 4, 7 | mpbir 87 | . 2 ⊢ C⊧(λx:α AB) |
9 | 1 | wl 66 | . . 3 ⊢ λx:α A:(α → ∗) |
10 | 9, 5 | ax4e 168 | . 2 ⊢ (λx:α AB)⊧(∃λx:α A) |
11 | 8, 10 | syl 16 | 1 ⊢ C⊧(∃λx:α A) |
Colors of variables: type var term |
Syntax hints: tv 1 ∗hb 3 kc 5 λkl 6 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 ∃tex 123 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-ex 131 |
This theorem is referenced by: axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |