HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  cla4ev GIF version

Theorem cla4ev 169
Description: Existential introduction. (Contributed by Mario Carneiro, 9-Oct-2014.)
Hypotheses
Ref Expression
cla4ev.1 A:∗
cla4ev.2 B:α
cla4ev.3 [x:α = B]⊧[A = C]
Assertion
Ref Expression
cla4ev C⊧(λx:α A)
Distinct variable groups:   x,B   x,C   α,x

Proof of Theorem cla4ev
StepHypRef Expression
1 cla4ev.1 . . . . 5 A:∗
2 cla4ev.3 . . . . 5 [x:α = B]⊧[A = C]
31, 2eqtypi 78 . . . 4 C:∗
43id 25 . . 3 CC
5 cla4ev.2 . . . . 5 B:α
61, 5, 2cl 116 . . . 4 ⊤⊧[(λx:α AB) = C]
73, 6a1i 28 . . 3 C⊧[(λx:α AB) = C]
84, 7mpbir 87 . 2 C⊧(λx:α AB)
91wl 66 . . 3 λx:α A:(α → ∗)
109, 5ax4e 168 . 2 (λx:α AB)⊧(λx:α A)
118, 10syl 16 1 C⊧(λx:α A)
Colors of variables: type var term
Syntax hints:  tv 1  hb 3  kc 5  λkl 6   = ke 7  [kbr 9  wffMMJ2 11  wffMMJ2t 12  tex 123
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129  df-ex 131
This theorem is referenced by:  axpow  221  axun  222
  Copyright terms: Public domain W3C validator