Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ex | GIF version |
Description: Exportation deduction. (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
ex.1 | ⊢ (R, S)⊧T |
Ref | Expression |
---|---|
ex | ⊢ R⊧[S ⇒ T] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wan 136 | . . . 4 ⊢ ∧ :(∗ → (∗ → ∗)) | |
2 | ex.1 | . . . . . 6 ⊢ (R, S)⊧T | |
3 | 2 | ax-cb1 29 | . . . . 5 ⊢ (R, S):∗ |
4 | 3 | wctr 34 | . . . 4 ⊢ S:∗ |
5 | 2 | ax-cb2 30 | . . . 4 ⊢ T:∗ |
6 | 1, 4, 5 | wov 72 | . . 3 ⊢ [S ∧ T]:∗ |
7 | 3 | wctl 33 | . . . 4 ⊢ R:∗ |
8 | 4, 5 | dfan2 154 | . . . 4 ⊢ ⊤⊧[[S ∧ T] = (S, T)] |
9 | 7, 8 | a1i 28 | . . 3 ⊢ R⊧[[S ∧ T] = (S, T)] |
10 | 4, 5 | wct 48 | . . . . . 6 ⊢ (S, T):∗ |
11 | 7, 10 | simpr 23 | . . . . 5 ⊢ (R, (S, T))⊧(S, T) |
12 | 11 | simpld 37 | . . . 4 ⊢ (R, (S, T))⊧S |
13 | 7, 4 | simpr 23 | . . . . 5 ⊢ (R, S)⊧S |
14 | 13, 2 | jca 18 | . . . 4 ⊢ (R, S)⊧(S, T) |
15 | 12, 14 | ded 84 | . . 3 ⊢ R⊧[(S, T) = S] |
16 | 6, 9, 15 | eqtri 95 | . 2 ⊢ R⊧[[S ∧ T] = S] |
17 | 16 | ax-cb1 29 | . . 3 ⊢ R:∗ |
18 | 4, 5 | imval 146 | . . 3 ⊢ ⊤⊧[[S ⇒ T] = [[S ∧ T] = S]] |
19 | 17, 18 | a1i 28 | . 2 ⊢ R⊧[[S ⇒ T] = [[S ∧ T] = S]] |
20 | 16, 19 | mpbir 87 | 1 ⊢ R⊧[S ⇒ T] |
Colors of variables: type var term |
Syntax hints: ∗hb 3 = ke 7 [kbr 9 kct 10 ⊧wffMMJ2 11 ∧ tan 119 ⇒ tim 121 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-an 128 df-im 129 |
This theorem is referenced by: notval2 159 notnot1 160 con2d 161 ecase 163 olc 164 orc 165 exlimdv2 166 exlimdv 167 ax4e 168 exlimd 183 alnex 186 isfree 188 exmid 199 ax1 203 ax2 204 ax3 205 ax5 207 ax7 209 ax8 211 ax10 213 ax11 214 ax12 215 ax13 216 ax14 217 axext 219 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |