Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > con2d | GIF version |
Description: A contraposition deduction. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
con2d.1 | ⊢ T:∗ |
con2d.2 | ⊢ (R, S)⊧(¬ T) |
Ref | Expression |
---|---|
con2d | ⊢ (R, T)⊧(¬ S) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2d.1 | . . . . 5 ⊢ T:∗ | |
2 | wfal 135 | . . . . 5 ⊢ ⊥:∗ | |
3 | con2d.2 | . . . . . 6 ⊢ (R, S)⊧(¬ T) | |
4 | 3 | ax-cb1 29 | . . . . . . 7 ⊢ (R, S):∗ |
5 | 1 | notval 145 | . . . . . . 7 ⊢ ⊤⊧[(¬ T) = [T ⇒ ⊥]] |
6 | 4, 5 | a1i 28 | . . . . . 6 ⊢ (R, S)⊧[(¬ T) = [T ⇒ ⊥]] |
7 | 3, 6 | mpbi 82 | . . . . 5 ⊢ (R, S)⊧[T ⇒ ⊥] |
8 | 1, 2, 7 | imp 157 | . . . 4 ⊢ ((R, S), T)⊧⊥ |
9 | 8 | an32s 60 | . . 3 ⊢ ((R, T), S)⊧⊥ |
10 | 9 | ex 158 | . 2 ⊢ (R, T)⊧[S ⇒ ⊥] |
11 | 4 | wctl 33 | . . . 4 ⊢ R:∗ |
12 | 11, 1 | wct 48 | . . 3 ⊢ (R, T):∗ |
13 | 4 | wctr 34 | . . . 4 ⊢ S:∗ |
14 | 13 | notval 145 | . . 3 ⊢ ⊤⊧[(¬ S) = [S ⇒ ⊥]] |
15 | 12, 14 | a1i 28 | . 2 ⊢ (R, T)⊧[(¬ S) = [S ⇒ ⊥]] |
16 | 10, 15 | mpbir 87 | 1 ⊢ (R, T)⊧(¬ S) |
Colors of variables: type var term |
Syntax hints: ∗hb 3 kc 5 = ke 7 [kbr 9 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 ⊥tfal 118 ¬ tne 120 ⇒ tim 121 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 |
This theorem is referenced by: con3d 162 exnal1 187 |
Copyright terms: Public domain | W3C validator |