Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > weqi | GIF version |
Description: Type of an equality. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
weqi.1 | ⊢ A:α |
weqi.2 | ⊢ B:α |
Ref | Expression |
---|---|
weqi | ⊢ [A = B]:∗ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weq 41 | . 2 ⊢ = :(α → (α → ∗)) | |
2 | weqi.1 | . 2 ⊢ A:α | |
3 | weqi.2 | . 2 ⊢ B:α | |
4 | 1, 2, 3 | wov 72 | 1 ⊢ [A = B]:∗ |
Colors of variables: type var term |
Syntax hints: ∗hb 3 = ke 7 [kbr 9 wffMMJ2t 12 |
This theorem was proved from axioms: ax-weq 40 ax-wov 71 |
This theorem is referenced by: clf 115 ovl 117 wal 134 wan 136 wim 137 weu 141 alval 142 exval 143 euval 144 notval 145 imval 146 orval 147 anval 148 pm2.21 153 dfan2 154 ecase 163 exlimdv2 166 exlimdv 167 ax4e 168 eta 178 cbvf 179 leqf 181 exlimd 183 ac 197 exmid 199 ax8 211 ax9 212 ax10 213 ax11 214 ax12 215 ax13 216 ax14 217 axext 219 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |