ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpoovd Unicode version

Theorem fnmpoovd 6361
Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
fnmpoovd.m  |-  ( ph  ->  M  Fn  ( A  X.  B ) )
fnmpoovd.s  |-  ( ( i  =  a  /\  j  =  b )  ->  D  =  C )
fnmpoovd.d  |-  ( (
ph  /\  i  e.  A  /\  j  e.  B
)  ->  D  e.  U )
fnmpoovd.c  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  C  e.  V )
Assertion
Ref Expression
fnmpoovd  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
Distinct variable groups:    A, a, b, i, j    B, a, b, i, j    C, i, j    D, a, b   
i, M, j    ph, a,
b, i, j
Allowed substitution hints:    C( a, b)    D( i, j)    U( i, j, a, b)    M( a, b)    V( i, j, a, b)

Proof of Theorem fnmpoovd
StepHypRef Expression
1 fnmpoovd.m . . 3  |-  ( ph  ->  M  Fn  ( A  X.  B ) )
2 fnmpoovd.c . . . . . 6  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  C  e.  V )
323expb 1228 . . . . 5  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  ->  C  e.  V )
43ralrimivva 2612 . . . 4  |-  ( ph  ->  A. a  e.  A  A. b  e.  B  C  e.  V )
5 eqid 2229 . . . . 5  |-  ( a  e.  A ,  b  e.  B  |->  C )  =  ( a  e.  A ,  b  e.  B  |->  C )
65fnmpo 6348 . . . 4  |-  ( A. a  e.  A  A. b  e.  B  C  e.  V  ->  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )
74, 6syl 14 . . 3  |-  ( ph  ->  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )
8 eqfnov2 6112 . . 3  |-  ( ( M  Fn  ( A  X.  B )  /\  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )  ->  ( M  =  ( a  e.  A ,  b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j ) ) )
91, 7, 8syl2anc 411 . 2  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j ) ) )
10 nfcv 2372 . . . . . . . 8  |-  F/_ a D
11 nfcv 2372 . . . . . . . 8  |-  F/_ b D
12 nfcv 2372 . . . . . . . 8  |-  F/_ i C
13 nfcv 2372 . . . . . . . 8  |-  F/_ j C
14 fnmpoovd.s . . . . . . . 8  |-  ( ( i  =  a  /\  j  =  b )  ->  D  =  C )
1510, 11, 12, 13, 14cbvmpo 6083 . . . . . . 7  |-  ( i  e.  A ,  j  e.  B  |->  D )  =  ( a  e.  A ,  b  e.  B  |->  C )
1615eqcomi 2233 . . . . . 6  |-  ( a  e.  A ,  b  e.  B  |->  C )  =  ( i  e.  A ,  j  e.  B  |->  D )
1716a1i 9 . . . . 5  |-  ( ph  ->  ( a  e.  A ,  b  e.  B  |->  C )  =  ( i  e.  A , 
j  e.  B  |->  D ) )
1817oveqd 6018 . . . 4  |-  ( ph  ->  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) )
1918eqeq2d 2241 . . 3  |-  ( ph  ->  ( ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  <->  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) ) )
20192ralbidv 2554 . 2  |-  ( ph  ->  ( A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) ) )
21 simprl 529 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
i  e.  A )
22 simprr 531 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
j  e.  B )
23 fnmpoovd.d . . . . . 6  |-  ( (
ph  /\  i  e.  A  /\  j  e.  B
)  ->  D  e.  U )
24233expb 1228 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  ->  D  e.  U )
25 eqid 2229 . . . . . 6  |-  ( i  e.  A ,  j  e.  B  |->  D )  =  ( i  e.  A ,  j  e.  B  |->  D )
2625ovmpt4g 6127 . . . . 5  |-  ( ( i  e.  A  /\  j  e.  B  /\  D  e.  U )  ->  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  =  D )
2721, 22, 24, 26syl3anc 1271 . . . 4  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
( i ( i  e.  A ,  j  e.  B  |->  D ) j )  =  D )
2827eqeq2d 2241 . . 3  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
( ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  <->  ( i M j )  =  D ) )
29282ralbidva 2552 . 2  |-  ( ph  ->  ( A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
309, 20, 293bitrd 214 1  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    X. cxp 4717    Fn wfn 5313  (class class class)co 6001    e. cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator