| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmpoovd | Unicode version | ||
| Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.) |
| Ref | Expression |
|---|---|
| fnmpoovd.m |
|
| fnmpoovd.s |
|
| fnmpoovd.d |
|
| fnmpoovd.c |
|
| Ref | Expression |
|---|---|
| fnmpoovd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpoovd.m |
. . 3
| |
| 2 | fnmpoovd.c |
. . . . . 6
| |
| 3 | 2 | 3expb 1207 |
. . . . 5
|
| 4 | 3 | ralrimivva 2590 |
. . . 4
|
| 5 | eqid 2207 |
. . . . 5
| |
| 6 | 5 | fnmpo 6311 |
. . . 4
|
| 7 | 4, 6 | syl 14 |
. . 3
|
| 8 | eqfnov2 6076 |
. . 3
| |
| 9 | 1, 7, 8 | syl2anc 411 |
. 2
|
| 10 | nfcv 2350 |
. . . . . . . 8
| |
| 11 | nfcv 2350 |
. . . . . . . 8
| |
| 12 | nfcv 2350 |
. . . . . . . 8
| |
| 13 | nfcv 2350 |
. . . . . . . 8
| |
| 14 | fnmpoovd.s |
. . . . . . . 8
| |
| 15 | 10, 11, 12, 13, 14 | cbvmpo 6047 |
. . . . . . 7
|
| 16 | 15 | eqcomi 2211 |
. . . . . 6
|
| 17 | 16 | a1i 9 |
. . . . 5
|
| 18 | 17 | oveqd 5984 |
. . . 4
|
| 19 | 18 | eqeq2d 2219 |
. . 3
|
| 20 | 19 | 2ralbidv 2532 |
. 2
|
| 21 | simprl 529 |
. . . . 5
| |
| 22 | simprr 531 |
. . . . 5
| |
| 23 | fnmpoovd.d |
. . . . . 6
| |
| 24 | 23 | 3expb 1207 |
. . . . 5
|
| 25 | eqid 2207 |
. . . . . 6
| |
| 26 | 25 | ovmpt4g 6091 |
. . . . 5
|
| 27 | 21, 22, 24, 26 | syl3anc 1250 |
. . . 4
|
| 28 | 27 | eqeq2d 2219 |
. . 3
|
| 29 | 28 | 2ralbidva 2530 |
. 2
|
| 30 | 9, 20, 29 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |