ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpoovd Unicode version

Theorem fnmpoovd 6268
Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
fnmpoovd.m  |-  ( ph  ->  M  Fn  ( A  X.  B ) )
fnmpoovd.s  |-  ( ( i  =  a  /\  j  =  b )  ->  D  =  C )
fnmpoovd.d  |-  ( (
ph  /\  i  e.  A  /\  j  e.  B
)  ->  D  e.  U )
fnmpoovd.c  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  C  e.  V )
Assertion
Ref Expression
fnmpoovd  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
Distinct variable groups:    A, a, b, i, j    B, a, b, i, j    C, i, j    D, a, b   
i, M, j    ph, a,
b, i, j
Allowed substitution hints:    C( a, b)    D( i, j)    U( i, j, a, b)    M( a, b)    V( i, j, a, b)

Proof of Theorem fnmpoovd
StepHypRef Expression
1 fnmpoovd.m . . 3  |-  ( ph  ->  M  Fn  ( A  X.  B ) )
2 fnmpoovd.c . . . . . 6  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  C  e.  V )
323expb 1206 . . . . 5  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  ->  C  e.  V )
43ralrimivva 2576 . . . 4  |-  ( ph  ->  A. a  e.  A  A. b  e.  B  C  e.  V )
5 eqid 2193 . . . . 5  |-  ( a  e.  A ,  b  e.  B  |->  C )  =  ( a  e.  A ,  b  e.  B  |->  C )
65fnmpo 6255 . . . 4  |-  ( A. a  e.  A  A. b  e.  B  C  e.  V  ->  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )
74, 6syl 14 . . 3  |-  ( ph  ->  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )
8 eqfnov2 6026 . . 3  |-  ( ( M  Fn  ( A  X.  B )  /\  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )  ->  ( M  =  ( a  e.  A ,  b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j ) ) )
91, 7, 8syl2anc 411 . 2  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j ) ) )
10 nfcv 2336 . . . . . . . 8  |-  F/_ a D
11 nfcv 2336 . . . . . . . 8  |-  F/_ b D
12 nfcv 2336 . . . . . . . 8  |-  F/_ i C
13 nfcv 2336 . . . . . . . 8  |-  F/_ j C
14 fnmpoovd.s . . . . . . . 8  |-  ( ( i  =  a  /\  j  =  b )  ->  D  =  C )
1510, 11, 12, 13, 14cbvmpo 5997 . . . . . . 7  |-  ( i  e.  A ,  j  e.  B  |->  D )  =  ( a  e.  A ,  b  e.  B  |->  C )
1615eqcomi 2197 . . . . . 6  |-  ( a  e.  A ,  b  e.  B  |->  C )  =  ( i  e.  A ,  j  e.  B  |->  D )
1716a1i 9 . . . . 5  |-  ( ph  ->  ( a  e.  A ,  b  e.  B  |->  C )  =  ( i  e.  A , 
j  e.  B  |->  D ) )
1817oveqd 5935 . . . 4  |-  ( ph  ->  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) )
1918eqeq2d 2205 . . 3  |-  ( ph  ->  ( ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  <->  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) ) )
20192ralbidv 2518 . 2  |-  ( ph  ->  ( A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) ) )
21 simprl 529 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
i  e.  A )
22 simprr 531 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
j  e.  B )
23 fnmpoovd.d . . . . . 6  |-  ( (
ph  /\  i  e.  A  /\  j  e.  B
)  ->  D  e.  U )
24233expb 1206 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  ->  D  e.  U )
25 eqid 2193 . . . . . 6  |-  ( i  e.  A ,  j  e.  B  |->  D )  =  ( i  e.  A ,  j  e.  B  |->  D )
2625ovmpt4g 6041 . . . . 5  |-  ( ( i  e.  A  /\  j  e.  B  /\  D  e.  U )  ->  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  =  D )
2721, 22, 24, 26syl3anc 1249 . . . 4  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
( i ( i  e.  A ,  j  e.  B  |->  D ) j )  =  D )
2827eqeq2d 2205 . . 3  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
( ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  <->  ( i M j )  =  D ) )
29282ralbidva 2516 . 2  |-  ( ph  ->  ( A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
309, 20, 293bitrd 214 1  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    X. cxp 4657    Fn wfn 5249  (class class class)co 5918    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator