ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpoovd Unicode version

Theorem fnmpoovd 6120
Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
fnmpoovd.m  |-  ( ph  ->  M  Fn  ( A  X.  B ) )
fnmpoovd.s  |-  ( ( i  =  a  /\  j  =  b )  ->  D  =  C )
fnmpoovd.d  |-  ( (
ph  /\  i  e.  A  /\  j  e.  B
)  ->  D  e.  U )
fnmpoovd.c  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  C  e.  V )
Assertion
Ref Expression
fnmpoovd  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
Distinct variable groups:    A, a, b, i, j    B, a, b, i, j    C, i, j    D, a, b   
i, M, j    ph, a,
b, i, j
Allowed substitution hints:    C( a, b)    D( i, j)    U( i, j, a, b)    M( a, b)    V( i, j, a, b)

Proof of Theorem fnmpoovd
StepHypRef Expression
1 fnmpoovd.m . . 3  |-  ( ph  ->  M  Fn  ( A  X.  B ) )
2 fnmpoovd.c . . . . . 6  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  C  e.  V )
323expb 1183 . . . . 5  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  ->  C  e.  V )
43ralrimivva 2517 . . . 4  |-  ( ph  ->  A. a  e.  A  A. b  e.  B  C  e.  V )
5 eqid 2140 . . . . 5  |-  ( a  e.  A ,  b  e.  B  |->  C )  =  ( a  e.  A ,  b  e.  B  |->  C )
65fnmpo 6108 . . . 4  |-  ( A. a  e.  A  A. b  e.  B  C  e.  V  ->  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )
74, 6syl 14 . . 3  |-  ( ph  ->  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )
8 eqfnov2 5886 . . 3  |-  ( ( M  Fn  ( A  X.  B )  /\  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )  ->  ( M  =  ( a  e.  A ,  b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j ) ) )
91, 7, 8syl2anc 409 . 2  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j ) ) )
10 nfcv 2282 . . . . . . . 8  |-  F/_ a D
11 nfcv 2282 . . . . . . . 8  |-  F/_ b D
12 nfcv 2282 . . . . . . . 8  |-  F/_ i C
13 nfcv 2282 . . . . . . . 8  |-  F/_ j C
14 fnmpoovd.s . . . . . . . 8  |-  ( ( i  =  a  /\  j  =  b )  ->  D  =  C )
1510, 11, 12, 13, 14cbvmpo 5858 . . . . . . 7  |-  ( i  e.  A ,  j  e.  B  |->  D )  =  ( a  e.  A ,  b  e.  B  |->  C )
1615eqcomi 2144 . . . . . 6  |-  ( a  e.  A ,  b  e.  B  |->  C )  =  ( i  e.  A ,  j  e.  B  |->  D )
1716a1i 9 . . . . 5  |-  ( ph  ->  ( a  e.  A ,  b  e.  B  |->  C )  =  ( i  e.  A , 
j  e.  B  |->  D ) )
1817oveqd 5799 . . . 4  |-  ( ph  ->  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) )
1918eqeq2d 2152 . . 3  |-  ( ph  ->  ( ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  <->  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) ) )
20192ralbidv 2462 . 2  |-  ( ph  ->  ( A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) ) )
21 simprl 521 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
i  e.  A )
22 simprr 522 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
j  e.  B )
23 fnmpoovd.d . . . . . 6  |-  ( (
ph  /\  i  e.  A  /\  j  e.  B
)  ->  D  e.  U )
24233expb 1183 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  ->  D  e.  U )
25 eqid 2140 . . . . . 6  |-  ( i  e.  A ,  j  e.  B  |->  D )  =  ( i  e.  A ,  j  e.  B  |->  D )
2625ovmpt4g 5901 . . . . 5  |-  ( ( i  e.  A  /\  j  e.  B  /\  D  e.  U )  ->  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  =  D )
2721, 22, 24, 26syl3anc 1217 . . . 4  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
( i ( i  e.  A ,  j  e.  B  |->  D ) j )  =  D )
2827eqeq2d 2152 . . 3  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
( ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  <->  ( i M j )  =  D ) )
29282ralbidva 2460 . 2  |-  ( ph  ->  ( A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
309, 20, 293bitrd 213 1  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417    X. cxp 4545    Fn wfn 5126  (class class class)co 5782    e. cmpo 5784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator