| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmpoovd | Unicode version | ||
| Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.) |
| Ref | Expression |
|---|---|
| fnmpoovd.m |
|
| fnmpoovd.s |
|
| fnmpoovd.d |
|
| fnmpoovd.c |
|
| Ref | Expression |
|---|---|
| fnmpoovd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpoovd.m |
. . 3
| |
| 2 | fnmpoovd.c |
. . . . . 6
| |
| 3 | 2 | 3expb 1228 |
. . . . 5
|
| 4 | 3 | ralrimivva 2612 |
. . . 4
|
| 5 | eqid 2229 |
. . . . 5
| |
| 6 | 5 | fnmpo 6348 |
. . . 4
|
| 7 | 4, 6 | syl 14 |
. . 3
|
| 8 | eqfnov2 6112 |
. . 3
| |
| 9 | 1, 7, 8 | syl2anc 411 |
. 2
|
| 10 | nfcv 2372 |
. . . . . . . 8
| |
| 11 | nfcv 2372 |
. . . . . . . 8
| |
| 12 | nfcv 2372 |
. . . . . . . 8
| |
| 13 | nfcv 2372 |
. . . . . . . 8
| |
| 14 | fnmpoovd.s |
. . . . . . . 8
| |
| 15 | 10, 11, 12, 13, 14 | cbvmpo 6083 |
. . . . . . 7
|
| 16 | 15 | eqcomi 2233 |
. . . . . 6
|
| 17 | 16 | a1i 9 |
. . . . 5
|
| 18 | 17 | oveqd 6018 |
. . . 4
|
| 19 | 18 | eqeq2d 2241 |
. . 3
|
| 20 | 19 | 2ralbidv 2554 |
. 2
|
| 21 | simprl 529 |
. . . . 5
| |
| 22 | simprr 531 |
. . . . 5
| |
| 23 | fnmpoovd.d |
. . . . . 6
| |
| 24 | 23 | 3expb 1228 |
. . . . 5
|
| 25 | eqid 2229 |
. . . . . 6
| |
| 26 | 25 | ovmpt4g 6127 |
. . . . 5
|
| 27 | 21, 22, 24, 26 | syl3anc 1271 |
. . . 4
|
| 28 | 27 | eqeq2d 2241 |
. . 3
|
| 29 | 28 | 2ralbidva 2552 |
. 2
|
| 30 | 9, 20, 29 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |