ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpoovd Unicode version

Theorem fnmpoovd 6112
Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
fnmpoovd.m  |-  ( ph  ->  M  Fn  ( A  X.  B ) )
fnmpoovd.s  |-  ( ( i  =  a  /\  j  =  b )  ->  D  =  C )
fnmpoovd.d  |-  ( (
ph  /\  i  e.  A  /\  j  e.  B
)  ->  D  e.  U )
fnmpoovd.c  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  C  e.  V )
Assertion
Ref Expression
fnmpoovd  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
Distinct variable groups:    A, a, b, i, j    B, a, b, i, j    C, i, j    D, a, b   
i, M, j    ph, a,
b, i, j
Allowed substitution hints:    C( a, b)    D( i, j)    U( i, j, a, b)    M( a, b)    V( i, j, a, b)

Proof of Theorem fnmpoovd
StepHypRef Expression
1 fnmpoovd.m . . 3  |-  ( ph  ->  M  Fn  ( A  X.  B ) )
2 fnmpoovd.c . . . . . 6  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  C  e.  V )
323expb 1182 . . . . 5  |-  ( (
ph  /\  ( a  e.  A  /\  b  e.  B ) )  ->  C  e.  V )
43ralrimivva 2514 . . . 4  |-  ( ph  ->  A. a  e.  A  A. b  e.  B  C  e.  V )
5 eqid 2139 . . . . 5  |-  ( a  e.  A ,  b  e.  B  |->  C )  =  ( a  e.  A ,  b  e.  B  |->  C )
65fnmpo 6100 . . . 4  |-  ( A. a  e.  A  A. b  e.  B  C  e.  V  ->  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )
74, 6syl 14 . . 3  |-  ( ph  ->  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )
8 eqfnov2 5878 . . 3  |-  ( ( M  Fn  ( A  X.  B )  /\  ( a  e.  A ,  b  e.  B  |->  C )  Fn  ( A  X.  B ) )  ->  ( M  =  ( a  e.  A ,  b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j ) ) )
91, 7, 8syl2anc 408 . 2  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j ) ) )
10 nfcv 2281 . . . . . . . 8  |-  F/_ a D
11 nfcv 2281 . . . . . . . 8  |-  F/_ b D
12 nfcv 2281 . . . . . . . 8  |-  F/_ i C
13 nfcv 2281 . . . . . . . 8  |-  F/_ j C
14 fnmpoovd.s . . . . . . . 8  |-  ( ( i  =  a  /\  j  =  b )  ->  D  =  C )
1510, 11, 12, 13, 14cbvmpo 5850 . . . . . . 7  |-  ( i  e.  A ,  j  e.  B  |->  D )  =  ( a  e.  A ,  b  e.  B  |->  C )
1615eqcomi 2143 . . . . . 6  |-  ( a  e.  A ,  b  e.  B  |->  C )  =  ( i  e.  A ,  j  e.  B  |->  D )
1716a1i 9 . . . . 5  |-  ( ph  ->  ( a  e.  A ,  b  e.  B  |->  C )  =  ( i  e.  A , 
j  e.  B  |->  D ) )
1817oveqd 5791 . . . 4  |-  ( ph  ->  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) )
1918eqeq2d 2151 . . 3  |-  ( ph  ->  ( ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  <->  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) ) )
20192ralbidv 2459 . 2  |-  ( ph  ->  ( A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( a  e.  A ,  b  e.  B  |->  C ) j )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j ) ) )
21 simprl 520 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
i  e.  A )
22 simprr 521 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
j  e.  B )
23 fnmpoovd.d . . . . . 6  |-  ( (
ph  /\  i  e.  A  /\  j  e.  B
)  ->  D  e.  U )
24233expb 1182 . . . . 5  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  ->  D  e.  U )
25 eqid 2139 . . . . . 6  |-  ( i  e.  A ,  j  e.  B  |->  D )  =  ( i  e.  A ,  j  e.  B  |->  D )
2625ovmpt4g 5893 . . . . 5  |-  ( ( i  e.  A  /\  j  e.  B  /\  D  e.  U )  ->  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  =  D )
2721, 22, 24, 26syl3anc 1216 . . . 4  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
( i ( i  e.  A ,  j  e.  B  |->  D ) j )  =  D )
2827eqeq2d 2151 . . 3  |-  ( (
ph  /\  ( i  e.  A  /\  j  e.  B ) )  -> 
( ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  <->  ( i M j )  =  D ) )
29282ralbidva 2457 . 2  |-  ( ph  ->  ( A. i  e.  A  A. j  e.  B  ( i M j )  =  ( i ( i  e.  A ,  j  e.  B  |->  D ) j )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
309, 20, 293bitrd 213 1  |-  ( ph  ->  ( M  =  ( a  e.  A , 
b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416    X. cxp 4537    Fn wfn 5118  (class class class)co 5774    e. cmpo 5776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator