ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soinxp Unicode version

Theorem soinxp 4690
Description: Intersection of linear order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
soinxp  |-  ( R  Or  A  <->  ( R  i^i  ( A  X.  A
) )  Or  A
)

Proof of Theorem soinxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poinxp 4689 . . 3  |-  ( R  Po  A  <->  ( R  i^i  ( A  X.  A
) )  Po  A
)
2 brinxp 4688 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
x ( R  i^i  ( A  X.  A
) ) y ) )
323adant3 1017 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( x R y  <-> 
x ( R  i^i  ( A  X.  A
) ) y ) )
4 brinxp 4688 . . . . . . . . 9  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( x R z  <-> 
x ( R  i^i  ( A  X.  A
) ) z ) )
543adant2 1016 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( x R z  <-> 
x ( R  i^i  ( A  X.  A
) ) z ) )
6 brinxp 4688 . . . . . . . . . 10  |-  ( ( z  e.  A  /\  y  e.  A )  ->  ( z R y  <-> 
z ( R  i^i  ( A  X.  A
) ) y ) )
76ancoms 268 . . . . . . . . 9  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( z R y  <-> 
z ( R  i^i  ( A  X.  A
) ) y ) )
873adant1 1015 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( z R y  <-> 
z ( R  i^i  ( A  X.  A
) ) y ) )
95, 8orbi12d 793 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( ( x R z  \/  z R y )  <->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) )
103, 9imbi12d 234 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( ( x R y  ->  ( x R z  \/  z R y ) )  <-> 
( x ( R  i^i  ( A  X.  A ) ) y  ->  ( x ( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) ) )
11103expb 1204 . . . . 5  |-  ( ( x  e.  A  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
( x R y  ->  ( x R z  \/  z R y ) )  <->  ( x
( R  i^i  ( A  X.  A ) ) y  ->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) ) )
12112ralbidva 2497 . . . 4  |-  ( x  e.  A  ->  ( A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) )  <->  A. y  e.  A  A. z  e.  A  ( x
( R  i^i  ( A  X.  A ) ) y  ->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) ) )
1312ralbiia 2489 . . 3  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x
( R  i^i  ( A  X.  A ) ) y  ->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) )
141, 13anbi12i 460 . 2  |-  ( ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) )  <->  ( ( R  i^i  ( A  X.  A ) )  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x
( R  i^i  ( A  X.  A ) ) y  ->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) ) )
15 df-iso 4291 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
16 df-iso 4291 . 2  |-  ( ( R  i^i  ( A  X.  A ) )  Or  A  <->  ( ( R  i^i  ( A  X.  A ) )  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x
( R  i^i  ( A  X.  A ) ) y  ->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) ) )
1714, 15, 163bitr4i 212 1  |-  ( R  Or  A  <->  ( R  i^i  ( A  X.  A
) )  Or  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    e. wcel 2146   A.wral 2453    i^i cin 3126   class class class wbr 3998    Po wpo 4288    Or wor 4289    X. cxp 4618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-po 4290  df-iso 4291  df-xp 4626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator