| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cmnpropd | Unicode version | ||
| Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ablpropd.1 |
|
| ablpropd.2 |
|
| ablpropd.3 |
|
| Ref | Expression |
|---|---|
| cmnpropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablpropd.1 |
. . . 4
| |
| 2 | ablpropd.2 |
. . . 4
| |
| 3 | ablpropd.3 |
. . . 4
| |
| 4 | 1, 2, 3 | mndpropd 13387 |
. . 3
|
| 5 | 3 | oveqrspc2v 5994 |
. . . . . 6
|
| 6 | 3 | oveqrspc2v 5994 |
. . . . . . 7
|
| 7 | 6 | ancom2s 566 |
. . . . . 6
|
| 8 | 5, 7 | eqeq12d 2222 |
. . . . 5
|
| 9 | 8 | 2ralbidva 2530 |
. . . 4
|
| 10 | 1 | raleqdv 2711 |
. . . . 5
|
| 11 | 1, 10 | raleqbidv 2721 |
. . . 4
|
| 12 | 2 | raleqdv 2711 |
. . . . 5
|
| 13 | 2, 12 | raleqbidv 2721 |
. . . 4
|
| 14 | 9, 11, 13 | 3bitr3d 218 |
. . 3
|
| 15 | 4, 14 | anbi12d 473 |
. 2
|
| 16 | eqid 2207 |
. . 3
| |
| 17 | eqid 2207 |
. . 3
| |
| 18 | 16, 17 | iscmn 13744 |
. 2
|
| 19 | eqid 2207 |
. . 3
| |
| 20 | eqid 2207 |
. . 3
| |
| 21 | 19, 20 | iscmn 13744 |
. 2
|
| 22 | 15, 18, 21 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-cmn 13737 |
| This theorem is referenced by: ablpropd 13747 crngpropd 13916 |
| Copyright terms: Public domain | W3C validator |