ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnpropd Unicode version

Theorem cmnpropd 13602
Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
ablpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
ablpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
cmnpropd  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem cmnpropd
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 ablpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ablpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3mndpropd 13243 . . 3  |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
53oveqrspc2v 5970 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
63oveqrspc2v 5970 . . . . . . 7  |-  ( (
ph  /\  ( v  e.  B  /\  u  e.  B ) )  -> 
( v ( +g  `  K ) u )  =  ( v ( +g  `  L ) u ) )
76ancom2s 566 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( v ( +g  `  K ) u )  =  ( v ( +g  `  L ) u ) )
85, 7eqeq12d 2219 . . . . 5  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  ( u
( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
982ralbidva 2527 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  B  A. v  e.  B  ( u
( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
101raleqdv 2707 . . . . 5  |-  ( ph  ->  ( A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) ) )
111, 10raleqbidv 2717 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) ) )
122raleqdv 2707 . . . . 5  |-  ( ph  ->  ( A. v  e.  B  ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u )  <->  A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
132, 12raleqbidv 2717 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u )  <->  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
149, 11, 133bitr3d 218 . . 3  |-  ( ph  ->  ( A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
154, 14anbi12d 473 . 2  |-  ( ph  ->  ( ( K  e. 
Mnd  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) )  <-> 
( L  e.  Mnd  /\ 
A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) ( u ( +g  `  L
) v )  =  ( v ( +g  `  L ) u ) ) ) )
16 eqid 2204 . . 3  |-  ( Base `  K )  =  (
Base `  K )
17 eqid 2204 . . 3  |-  ( +g  `  K )  =  ( +g  `  K )
1816, 17iscmn 13600 . 2  |-  ( K  e. CMnd 
<->  ( K  e.  Mnd  /\ 
A. u  e.  (
Base `  K ) A. v  e.  ( Base `  K ) ( u ( +g  `  K
) v )  =  ( v ( +g  `  K ) u ) ) )
19 eqid 2204 . . 3  |-  ( Base `  L )  =  (
Base `  L )
20 eqid 2204 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
2119, 20iscmn 13600 . 2  |-  ( L  e. CMnd 
<->  ( L  e.  Mnd  /\ 
A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) ( u ( +g  `  L
) v )  =  ( v ( +g  `  L ) u ) ) )
2215, 18, 213bitr4g 223 1  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   ` cfv 5270  (class class class)co 5943   Basecbs 12803   +g cplusg 12880   Mndcmnd 13219  CMndccmn 13591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-inn 9036  df-2 9094  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-cmn 13593
This theorem is referenced by:  ablpropd  13603  crngpropd  13772
  Copyright terms: Public domain W3C validator