ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnpropd Unicode version

Theorem cmnpropd 12894
Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
ablpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
ablpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
cmnpropd  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem cmnpropd
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 ablpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ablpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3mndpropd 12706 . . 3  |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
53oveqrspc2v 5892 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
63oveqrspc2v 5892 . . . . . . 7  |-  ( (
ph  /\  ( v  e.  B  /\  u  e.  B ) )  -> 
( v ( +g  `  K ) u )  =  ( v ( +g  `  L ) u ) )
76ancom2s 566 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( v ( +g  `  K ) u )  =  ( v ( +g  `  L ) u ) )
85, 7eqeq12d 2190 . . . . 5  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  ( u
( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
982ralbidva 2497 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  B  A. v  e.  B  ( u
( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
101raleqdv 2676 . . . . 5  |-  ( ph  ->  ( A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) ) )
111, 10raleqbidv 2682 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) ) )
122raleqdv 2676 . . . . 5  |-  ( ph  ->  ( A. v  e.  B  ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u )  <->  A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
132, 12raleqbidv 2682 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u )  <->  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
149, 11, 133bitr3d 218 . . 3  |-  ( ph  ->  ( A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
154, 14anbi12d 473 . 2  |-  ( ph  ->  ( ( K  e. 
Mnd  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) )  <-> 
( L  e.  Mnd  /\ 
A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) ( u ( +g  `  L
) v )  =  ( v ( +g  `  L ) u ) ) ) )
16 eqid 2175 . . 3  |-  ( Base `  K )  =  (
Base `  K )
17 eqid 2175 . . 3  |-  ( +g  `  K )  =  ( +g  `  K )
1816, 17iscmn 12892 . 2  |-  ( K  e. CMnd 
<->  ( K  e.  Mnd  /\ 
A. u  e.  (
Base `  K ) A. v  e.  ( Base `  K ) ( u ( +g  `  K
) v )  =  ( v ( +g  `  K ) u ) ) )
19 eqid 2175 . . 3  |-  ( Base `  L )  =  (
Base `  L )
20 eqid 2175 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
2119, 20iscmn 12892 . 2  |-  ( L  e. CMnd 
<->  ( L  e.  Mnd  /\ 
A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) ( u ( +g  `  L
) v )  =  ( v ( +g  `  L ) u ) ) )
2215, 18, 213bitr4g 223 1  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   ` cfv 5208  (class class class)co 5865   Basecbs 12428   +g cplusg 12492   Mndcmnd 12682  CMndccmn 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-ov 5868  df-inn 8891  df-2 8949  df-ndx 12431  df-slot 12432  df-base 12434  df-plusg 12505  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-cmn 12886
This theorem is referenced by:  ablpropd  12895  crngpropd  13010
  Copyright terms: Public domain W3C validator