ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnpropd Unicode version

Theorem cmnpropd 13425
Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
ablpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
ablpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
cmnpropd  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem cmnpropd
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 ablpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ablpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3mndpropd 13081 . . 3  |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
53oveqrspc2v 5949 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
63oveqrspc2v 5949 . . . . . . 7  |-  ( (
ph  /\  ( v  e.  B  /\  u  e.  B ) )  -> 
( v ( +g  `  K ) u )  =  ( v ( +g  `  L ) u ) )
76ancom2s 566 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( v ( +g  `  K ) u )  =  ( v ( +g  `  L ) u ) )
85, 7eqeq12d 2211 . . . . 5  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  ( u
( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
982ralbidva 2519 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  B  A. v  e.  B  ( u
( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
101raleqdv 2699 . . . . 5  |-  ( ph  ->  ( A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) ) )
111, 10raleqbidv 2709 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) ) )
122raleqdv 2699 . . . . 5  |-  ( ph  ->  ( A. v  e.  B  ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u )  <->  A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
132, 12raleqbidv 2709 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u )  <->  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
149, 11, 133bitr3d 218 . . 3  |-  ( ph  ->  ( A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
154, 14anbi12d 473 . 2  |-  ( ph  ->  ( ( K  e. 
Mnd  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) )  <-> 
( L  e.  Mnd  /\ 
A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) ( u ( +g  `  L
) v )  =  ( v ( +g  `  L ) u ) ) ) )
16 eqid 2196 . . 3  |-  ( Base `  K )  =  (
Base `  K )
17 eqid 2196 . . 3  |-  ( +g  `  K )  =  ( +g  `  K )
1816, 17iscmn 13423 . 2  |-  ( K  e. CMnd 
<->  ( K  e.  Mnd  /\ 
A. u  e.  (
Base `  K ) A. v  e.  ( Base `  K ) ( u ( +g  `  K
) v )  =  ( v ( +g  `  K ) u ) ) )
19 eqid 2196 . . 3  |-  ( Base `  L )  =  (
Base `  L )
20 eqid 2196 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
2119, 20iscmn 13423 . 2  |-  ( L  e. CMnd 
<->  ( L  e.  Mnd  /\ 
A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) ( u ( +g  `  L
) v )  =  ( v ( +g  `  L ) u ) ) )
2215, 18, 213bitr4g 223 1  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   Mndcmnd 13057  CMndccmn 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-cmn 13416
This theorem is referenced by:  ablpropd  13426  crngpropd  13595
  Copyright terms: Public domain W3C validator