ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnpropd Unicode version

Theorem cmnpropd 13746
Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
ablpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
ablpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
cmnpropd  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem cmnpropd
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 ablpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ablpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3mndpropd 13387 . . 3  |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
53oveqrspc2v 5994 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
63oveqrspc2v 5994 . . . . . . 7  |-  ( (
ph  /\  ( v  e.  B  /\  u  e.  B ) )  -> 
( v ( +g  `  K ) u )  =  ( v ( +g  `  L ) u ) )
76ancom2s 566 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( v ( +g  `  K ) u )  =  ( v ( +g  `  L ) u ) )
85, 7eqeq12d 2222 . . . . 5  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  ( u
( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
982ralbidva 2530 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  B  A. v  e.  B  ( u
( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
101raleqdv 2711 . . . . 5  |-  ( ph  ->  ( A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) ) )
111, 10raleqbidv 2721 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) ) )
122raleqdv 2711 . . . . 5  |-  ( ph  ->  ( A. v  e.  B  ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u )  <->  A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
132, 12raleqbidv 2721 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u )  <->  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
149, 11, 133bitr3d 218 . . 3  |-  ( ph  ->  ( A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
154, 14anbi12d 473 . 2  |-  ( ph  ->  ( ( K  e. 
Mnd  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) )  <-> 
( L  e.  Mnd  /\ 
A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) ( u ( +g  `  L
) v )  =  ( v ( +g  `  L ) u ) ) ) )
16 eqid 2207 . . 3  |-  ( Base `  K )  =  (
Base `  K )
17 eqid 2207 . . 3  |-  ( +g  `  K )  =  ( +g  `  K )
1816, 17iscmn 13744 . 2  |-  ( K  e. CMnd 
<->  ( K  e.  Mnd  /\ 
A. u  e.  (
Base `  K ) A. v  e.  ( Base `  K ) ( u ( +g  `  K
) v )  =  ( v ( +g  `  K ) u ) ) )
19 eqid 2207 . . 3  |-  ( Base `  L )  =  (
Base `  L )
20 eqid 2207 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
2119, 20iscmn 13744 . 2  |-  ( L  e. CMnd 
<->  ( L  e.  Mnd  /\ 
A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) ( u ( +g  `  L
) v )  =  ( v ( +g  `  L ) u ) ) )
2215, 18, 213bitr4g 223 1  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   Mndcmnd 13363  CMndccmn 13735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-cmn 13737
This theorem is referenced by:  ablpropd  13747  crngpropd  13916
  Copyright terms: Public domain W3C validator