ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isotr Unicode version

Theorem isotr 5766
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
isotr  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  ->  ( G  o.  H )  Isom  R ,  T  ( A ,  C ) )

Proof of Theorem isotr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) )  ->  G : B -1-1-onto-> C )
2 simpl 108 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  H : A -1-1-onto-> B )
3 f1oco 5437 . . . 4  |-  ( ( G : B -1-1-onto-> C  /\  H : A -1-1-onto-> B )  ->  ( G  o.  H ) : A -1-1-onto-> C )
41, 2, 3syl2anr 288 . . 3  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( G  o.  H
) : A -1-1-onto-> C )
5 f1of 5414 . . . . . . . . . . . 12  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
65ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  H : A
--> B )
7 simprl 521 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  x  e.  A )
86, 7ffvelrnd 5603 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( H `  x )  e.  B
)
9 simprr 522 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  y  e.  A )
106, 9ffvelrnd 5603 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( H `  y )  e.  B
)
11 simplrr 526 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) )
12 breq1 3968 . . . . . . . . . . . 12  |-  ( z  =  ( H `  x )  ->  (
z S w  <->  ( H `  x ) S w ) )
13 fveq2 5468 . . . . . . . . . . . . 13  |-  ( z  =  ( H `  x )  ->  ( G `  z )  =  ( G `  ( H `  x ) ) )
1413breq1d 3975 . . . . . . . . . . . 12  |-  ( z  =  ( H `  x )  ->  (
( G `  z
) T ( G `
 w )  <->  ( G `  ( H `  x
) ) T ( G `  w ) ) )
1512, 14bibi12d 234 . . . . . . . . . . 11  |-  ( z  =  ( H `  x )  ->  (
( z S w  <-> 
( G `  z
) T ( G `
 w ) )  <-> 
( ( H `  x ) S w  <-> 
( G `  ( H `  x )
) T ( G `
 w ) ) ) )
16 breq2 3969 . . . . . . . . . . . 12  |-  ( w  =  ( H `  y )  ->  (
( H `  x
) S w  <->  ( H `  x ) S ( H `  y ) ) )
17 fveq2 5468 . . . . . . . . . . . . 13  |-  ( w  =  ( H `  y )  ->  ( G `  w )  =  ( G `  ( H `  y ) ) )
1817breq2d 3977 . . . . . . . . . . . 12  |-  ( w  =  ( H `  y )  ->  (
( G `  ( H `  x )
) T ( G `
 w )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
1916, 18bibi12d 234 . . . . . . . . . . 11  |-  ( w  =  ( H `  y )  ->  (
( ( H `  x ) S w  <-> 
( G `  ( H `  x )
) T ( G `
 w ) )  <-> 
( ( H `  x ) S ( H `  y )  <-> 
( G `  ( H `  x )
) T ( G `
 ( H `  y ) ) ) ) )
2015, 19rspc2va 2830 . . . . . . . . . 10  |-  ( ( ( ( H `  x )  e.  B  /\  ( H `  y
)  e.  B )  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
218, 10, 11, 20syl21anc 1219 . . . . . . . . 9  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( H `  x ) S ( H `  y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
22 fvco3 5539 . . . . . . . . . . 11  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( ( G  o.  H ) `  x
)  =  ( G `
 ( H `  x ) ) )
236, 7, 22syl2anc 409 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( G  o.  H ) `  x )  =  ( G `  ( H `
 x ) ) )
24 fvco3 5539 . . . . . . . . . . 11  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( ( G  o.  H ) `  y
)  =  ( G `
 ( H `  y ) ) )
256, 9, 24syl2anc 409 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( G  o.  H ) `  y )  =  ( G `  ( H `
 y ) ) )
2623, 25breq12d 3978 . . . . . . . . 9  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
( G  o.  H
) `  x ) T ( ( G  o.  H ) `  y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
2721, 26bitr4d 190 . . . . . . . 8  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( H `  x ) S ( H `  y )  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) )
2827bibi2d 231 . . . . . . 7  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
x R y  <->  ( H `  x ) S ( H `  y ) )  <->  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
29282ralbidva 2479 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
3029biimpd 143 . . . . 5  |-  ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
3130impancom 258 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  (
( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
3231imp 123 . . 3  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) )
334, 32jca 304 . 2  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( ( G  o.  H ) : A -1-1-onto-> C  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
34 df-isom 5179 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
35 df-isom 5179 . . 3  |-  ( G 
Isom  S ,  T  ( B ,  C )  <-> 
( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )
3634, 35anbi12i 456 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  <->  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) ) )
37 df-isom 5179 . 2  |-  ( ( G  o.  H ) 
Isom  R ,  T  ( A ,  C )  <-> 
( ( G  o.  H ) : A -1-1-onto-> C  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
3833, 36, 373imtr4i 200 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  ->  ( G  o.  H )  Isom  R ,  T  ( A ,  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435   class class class wbr 3965    o. ccom 4590   -->wf 5166   -1-1-onto->wf1o 5169   ` cfv 5170    Isom wiso 5171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-isom 5179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator