| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isotr | Unicode version | ||
| Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| Ref | Expression |
|---|---|
| isotr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | simpl 109 |
. . . 4
| |
| 3 | f1oco 5594 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2anr 290 |
. . 3
|
| 5 | f1of 5571 |
. . . . . . . . . . . 12
| |
| 6 | 5 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 7 | simprl 529 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | ffvelcdmd 5770 |
. . . . . . . . . 10
|
| 9 | simprr 531 |
. . . . . . . . . . 11
| |
| 10 | 6, 9 | ffvelcdmd 5770 |
. . . . . . . . . 10
|
| 11 | simplrr 536 |
. . . . . . . . . 10
| |
| 12 | breq1 4085 |
. . . . . . . . . . . 12
| |
| 13 | fveq2 5626 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | breq1d 4092 |
. . . . . . . . . . . 12
|
| 15 | 12, 14 | bibi12d 235 |
. . . . . . . . . . 11
|
| 16 | breq2 4086 |
. . . . . . . . . . . 12
| |
| 17 | fveq2 5626 |
. . . . . . . . . . . . 13
| |
| 18 | 17 | breq2d 4094 |
. . . . . . . . . . . 12
|
| 19 | 16, 18 | bibi12d 235 |
. . . . . . . . . . 11
|
| 20 | 15, 19 | rspc2va 2921 |
. . . . . . . . . 10
|
| 21 | 8, 10, 11, 20 | syl21anc 1270 |
. . . . . . . . 9
|
| 22 | fvco3 5704 |
. . . . . . . . . . 11
| |
| 23 | 6, 7, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 24 | fvco3 5704 |
. . . . . . . . . . 11
| |
| 25 | 6, 9, 24 | syl2anc 411 |
. . . . . . . . . 10
|
| 26 | 23, 25 | breq12d 4095 |
. . . . . . . . 9
|
| 27 | 21, 26 | bitr4d 191 |
. . . . . . . 8
|
| 28 | 27 | bibi2d 232 |
. . . . . . 7
|
| 29 | 28 | 2ralbidva 2552 |
. . . . . 6
|
| 30 | 29 | biimpd 144 |
. . . . 5
|
| 31 | 30 | impancom 260 |
. . . 4
|
| 32 | 31 | imp 124 |
. . 3
|
| 33 | 4, 32 | jca 306 |
. 2
|
| 34 | df-isom 5326 |
. . 3
| |
| 35 | df-isom 5326 |
. . 3
| |
| 36 | 34, 35 | anbi12i 460 |
. 2
|
| 37 | df-isom 5326 |
. 2
| |
| 38 | 33, 36, 37 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |