| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isotr | Unicode version | ||
| Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| Ref | Expression |
|---|---|
| isotr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | simpl 109 |
. . . 4
| |
| 3 | f1oco 5544 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2anr 290 |
. . 3
|
| 5 | f1of 5521 |
. . . . . . . . . . . 12
| |
| 6 | 5 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 7 | simprl 529 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | ffvelcdmd 5715 |
. . . . . . . . . 10
|
| 9 | simprr 531 |
. . . . . . . . . . 11
| |
| 10 | 6, 9 | ffvelcdmd 5715 |
. . . . . . . . . 10
|
| 11 | simplrr 536 |
. . . . . . . . . 10
| |
| 12 | breq1 4046 |
. . . . . . . . . . . 12
| |
| 13 | fveq2 5575 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | breq1d 4053 |
. . . . . . . . . . . 12
|
| 15 | 12, 14 | bibi12d 235 |
. . . . . . . . . . 11
|
| 16 | breq2 4047 |
. . . . . . . . . . . 12
| |
| 17 | fveq2 5575 |
. . . . . . . . . . . . 13
| |
| 18 | 17 | breq2d 4055 |
. . . . . . . . . . . 12
|
| 19 | 16, 18 | bibi12d 235 |
. . . . . . . . . . 11
|
| 20 | 15, 19 | rspc2va 2890 |
. . . . . . . . . 10
|
| 21 | 8, 10, 11, 20 | syl21anc 1248 |
. . . . . . . . 9
|
| 22 | fvco3 5649 |
. . . . . . . . . . 11
| |
| 23 | 6, 7, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 24 | fvco3 5649 |
. . . . . . . . . . 11
| |
| 25 | 6, 9, 24 | syl2anc 411 |
. . . . . . . . . 10
|
| 26 | 23, 25 | breq12d 4056 |
. . . . . . . . 9
|
| 27 | 21, 26 | bitr4d 191 |
. . . . . . . 8
|
| 28 | 27 | bibi2d 232 |
. . . . . . 7
|
| 29 | 28 | 2ralbidva 2527 |
. . . . . 6
|
| 30 | 29 | biimpd 144 |
. . . . 5
|
| 31 | 30 | impancom 260 |
. . . 4
|
| 32 | 31 | imp 124 |
. . 3
|
| 33 | 4, 32 | jca 306 |
. 2
|
| 34 | df-isom 5279 |
. . 3
| |
| 35 | df-isom 5279 |
. . 3
| |
| 36 | 34, 35 | anbi12i 460 |
. 2
|
| 37 | df-isom 5279 |
. 2
| |
| 38 | 33, 36, 37 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |