Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mndpropd | Unicode version |
Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
mndpropd.1 | |
mndpropd.2 | |
mndpropd.3 |
Ref | Expression |
---|---|
mndpropd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 525 | . . . . . 6 | |
2 | simprl 526 | . . . . . . 7 | |
3 | mndpropd.1 | . . . . . . . 8 | |
4 | 3 | ad2antrr 485 | . . . . . . 7 |
5 | 2, 4 | eleqtrd 2249 | . . . . . 6 |
6 | simprr 527 | . . . . . . 7 | |
7 | 6, 4 | eleqtrd 2249 | . . . . . 6 |
8 | eqid 2170 | . . . . . . 7 | |
9 | eqid 2170 | . . . . . . 7 | |
10 | 8, 9 | mndcl 12659 | . . . . . 6 |
11 | 1, 5, 7, 10 | syl3anc 1233 | . . . . 5 |
12 | 11, 4 | eleqtrrd 2250 | . . . 4 |
13 | 12 | ralrimivva 2552 | . . 3 |
14 | 13 | ex 114 | . 2 |
15 | simplr 525 | . . . . . 6 | |
16 | simprl 526 | . . . . . . 7 | |
17 | mndpropd.2 | . . . . . . . 8 | |
18 | 17 | ad2antrr 485 | . . . . . . 7 |
19 | 16, 18 | eleqtrd 2249 | . . . . . 6 |
20 | simprr 527 | . . . . . . 7 | |
21 | 20, 18 | eleqtrd 2249 | . . . . . 6 |
22 | eqid 2170 | . . . . . . 7 | |
23 | eqid 2170 | . . . . . . 7 | |
24 | 22, 23 | mndcl 12659 | . . . . . 6 |
25 | 15, 19, 21, 24 | syl3anc 1233 | . . . . 5 |
26 | mndpropd.3 | . . . . . 6 | |
27 | 26 | adantlr 474 | . . . . 5 |
28 | 25, 27, 18 | 3eltr4d 2254 | . . . 4 |
29 | 28 | ralrimivva 2552 | . . 3 |
30 | 29 | ex 114 | . 2 |
31 | 26 | oveqrspc2v 5880 | . . . . . . . . . 10 |
32 | 31 | adantlr 474 | . . . . . . . . 9 |
33 | 32 | eleq1d 2239 | . . . . . . . 8 |
34 | simplll 528 | . . . . . . . . . . . 12 | |
35 | simplrl 530 | . . . . . . . . . . . . 13 | |
36 | simplrr 531 | . . . . . . . . . . . . 13 | |
37 | simpllr 529 | . . . . . . . . . . . . 13 | |
38 | ovrspc2v 5879 | . . . . . . . . . . . . 13 | |
39 | 35, 36, 37, 38 | syl21anc 1232 | . . . . . . . . . . . 12 |
40 | simpr 109 | . . . . . . . . . . . 12 | |
41 | 26 | oveqrspc2v 5880 | . . . . . . . . . . . 12 |
42 | 34, 39, 40, 41 | syl12anc 1231 | . . . . . . . . . . 11 |
43 | 34, 35, 36, 31 | syl12anc 1231 | . . . . . . . . . . . 12 |
44 | 43 | oveq1d 5868 | . . . . . . . . . . 11 |
45 | 42, 44 | eqtrd 2203 | . . . . . . . . . 10 |
46 | ovrspc2v 5879 | . . . . . . . . . . . . 13 | |
47 | 36, 40, 37, 46 | syl21anc 1232 | . . . . . . . . . . . 12 |
48 | 26 | oveqrspc2v 5880 | . . . . . . . . . . . 12 |
49 | 34, 35, 47, 48 | syl12anc 1231 | . . . . . . . . . . 11 |
50 | 26 | oveqrspc2v 5880 | . . . . . . . . . . . . 13 |
51 | 34, 36, 40, 50 | syl12anc 1231 | . . . . . . . . . . . 12 |
52 | 51 | oveq2d 5869 | . . . . . . . . . . 11 |
53 | 49, 52 | eqtrd 2203 | . . . . . . . . . 10 |
54 | 45, 53 | eqeq12d 2185 | . . . . . . . . 9 |
55 | 54 | ralbidva 2466 | . . . . . . . 8 |
56 | 33, 55 | anbi12d 470 | . . . . . . 7 |
57 | 56 | 2ralbidva 2492 | . . . . . 6 |
58 | 3 | adantr 274 | . . . . . . 7 |
59 | 58 | eleq2d 2240 | . . . . . . . . 9 |
60 | 58 | raleqdv 2671 | . . . . . . . . 9 |
61 | 59, 60 | anbi12d 470 | . . . . . . . 8 |
62 | 58, 61 | raleqbidv 2677 | . . . . . . 7 |
63 | 58, 62 | raleqbidv 2677 | . . . . . 6 |
64 | 17 | adantr 274 | . . . . . . 7 |
65 | 64 | eleq2d 2240 | . . . . . . . . 9 |
66 | 64 | raleqdv 2671 | . . . . . . . . 9 |
67 | 65, 66 | anbi12d 470 | . . . . . . . 8 |
68 | 64, 67 | raleqbidv 2677 | . . . . . . 7 |
69 | 64, 68 | raleqbidv 2677 | . . . . . 6 |
70 | 57, 63, 69 | 3bitr3d 217 | . . . . 5 |
71 | simplll 528 | . . . . . . . . . . 11 | |
72 | simplr 525 | . . . . . . . . . . 11 | |
73 | simpr 109 | . . . . . . . . . . 11 | |
74 | 26 | oveqrspc2v 5880 | . . . . . . . . . . 11 |
75 | 71, 72, 73, 74 | syl12anc 1231 | . . . . . . . . . 10 |
76 | 75 | eqeq1d 2179 | . . . . . . . . 9 |
77 | 26 | oveqrspc2v 5880 | . . . . . . . . . . 11 |
78 | 71, 73, 72, 77 | syl12anc 1231 | . . . . . . . . . 10 |
79 | 78 | eqeq1d 2179 | . . . . . . . . 9 |
80 | 76, 79 | anbi12d 470 | . . . . . . . 8 |
81 | 80 | ralbidva 2466 | . . . . . . 7 |
82 | 81 | rexbidva 2467 | . . . . . 6 |
83 | 58 | raleqdv 2671 | . . . . . . 7 |
84 | 58, 83 | rexeqbidv 2678 | . . . . . 6 |
85 | 64 | raleqdv 2671 | . . . . . . 7 |
86 | 64, 85 | rexeqbidv 2678 | . . . . . 6 |
87 | 82, 84, 86 | 3bitr3d 217 | . . . . 5 |
88 | 70, 87 | anbi12d 470 | . . . 4 |
89 | 8, 9 | ismnd 12655 | . . . 4 |
90 | 22, 23 | ismnd 12655 | . . . 4 |
91 | 88, 89, 90 | 3bitr4g 222 | . . 3 |
92 | 91 | ex 114 | . 2 |
93 | 14, 30, 92 | pm5.21ndd 700 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 cmnd 12652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-mgm 12610 df-sgrp 12643 df-mnd 12653 |
This theorem is referenced by: mndprop 12677 mhmpropd 12689 grppropd 12724 |
Copyright terms: Public domain | W3C validator |