Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mndpropd | Unicode version |
Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
mndpropd.1 | |
mndpropd.2 | |
mndpropd.3 |
Ref | Expression |
---|---|
mndpropd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 528 | . . . . . 6 | |
2 | simprl 529 | . . . . . . 7 | |
3 | mndpropd.1 | . . . . . . . 8 | |
4 | 3 | ad2antrr 488 | . . . . . . 7 |
5 | 2, 4 | eleqtrd 2254 | . . . . . 6 |
6 | simprr 531 | . . . . . . 7 | |
7 | 6, 4 | eleqtrd 2254 | . . . . . 6 |
8 | eqid 2175 | . . . . . . 7 | |
9 | eqid 2175 | . . . . . . 7 | |
10 | 8, 9 | mndcl 12690 | . . . . . 6 |
11 | 1, 5, 7, 10 | syl3anc 1238 | . . . . 5 |
12 | 11, 4 | eleqtrrd 2255 | . . . 4 |
13 | 12 | ralrimivva 2557 | . . 3 |
14 | 13 | ex 115 | . 2 |
15 | simplr 528 | . . . . . 6 | |
16 | simprl 529 | . . . . . . 7 | |
17 | mndpropd.2 | . . . . . . . 8 | |
18 | 17 | ad2antrr 488 | . . . . . . 7 |
19 | 16, 18 | eleqtrd 2254 | . . . . . 6 |
20 | simprr 531 | . . . . . . 7 | |
21 | 20, 18 | eleqtrd 2254 | . . . . . 6 |
22 | eqid 2175 | . . . . . . 7 | |
23 | eqid 2175 | . . . . . . 7 | |
24 | 22, 23 | mndcl 12690 | . . . . . 6 |
25 | 15, 19, 21, 24 | syl3anc 1238 | . . . . 5 |
26 | mndpropd.3 | . . . . . 6 | |
27 | 26 | adantlr 477 | . . . . 5 |
28 | 25, 27, 18 | 3eltr4d 2259 | . . . 4 |
29 | 28 | ralrimivva 2557 | . . 3 |
30 | 29 | ex 115 | . 2 |
31 | 26 | oveqrspc2v 5892 | . . . . . . . . . 10 |
32 | 31 | adantlr 477 | . . . . . . . . 9 |
33 | 32 | eleq1d 2244 | . . . . . . . 8 |
34 | simplll 533 | . . . . . . . . . . . 12 | |
35 | simplrl 535 | . . . . . . . . . . . . 13 | |
36 | simplrr 536 | . . . . . . . . . . . . 13 | |
37 | simpllr 534 | . . . . . . . . . . . . 13 | |
38 | ovrspc2v 5891 | . . . . . . . . . . . . 13 | |
39 | 35, 36, 37, 38 | syl21anc 1237 | . . . . . . . . . . . 12 |
40 | simpr 110 | . . . . . . . . . . . 12 | |
41 | 26 | oveqrspc2v 5892 | . . . . . . . . . . . 12 |
42 | 34, 39, 40, 41 | syl12anc 1236 | . . . . . . . . . . 11 |
43 | 34, 35, 36, 31 | syl12anc 1236 | . . . . . . . . . . . 12 |
44 | 43 | oveq1d 5880 | . . . . . . . . . . 11 |
45 | 42, 44 | eqtrd 2208 | . . . . . . . . . 10 |
46 | ovrspc2v 5891 | . . . . . . . . . . . . 13 | |
47 | 36, 40, 37, 46 | syl21anc 1237 | . . . . . . . . . . . 12 |
48 | 26 | oveqrspc2v 5892 | . . . . . . . . . . . 12 |
49 | 34, 35, 47, 48 | syl12anc 1236 | . . . . . . . . . . 11 |
50 | 26 | oveqrspc2v 5892 | . . . . . . . . . . . . 13 |
51 | 34, 36, 40, 50 | syl12anc 1236 | . . . . . . . . . . . 12 |
52 | 51 | oveq2d 5881 | . . . . . . . . . . 11 |
53 | 49, 52 | eqtrd 2208 | . . . . . . . . . 10 |
54 | 45, 53 | eqeq12d 2190 | . . . . . . . . 9 |
55 | 54 | ralbidva 2471 | . . . . . . . 8 |
56 | 33, 55 | anbi12d 473 | . . . . . . 7 |
57 | 56 | 2ralbidva 2497 | . . . . . 6 |
58 | 3 | adantr 276 | . . . . . . 7 |
59 | 58 | eleq2d 2245 | . . . . . . . . 9 |
60 | 58 | raleqdv 2676 | . . . . . . . . 9 |
61 | 59, 60 | anbi12d 473 | . . . . . . . 8 |
62 | 58, 61 | raleqbidv 2682 | . . . . . . 7 |
63 | 58, 62 | raleqbidv 2682 | . . . . . 6 |
64 | 17 | adantr 276 | . . . . . . 7 |
65 | 64 | eleq2d 2245 | . . . . . . . . 9 |
66 | 64 | raleqdv 2676 | . . . . . . . . 9 |
67 | 65, 66 | anbi12d 473 | . . . . . . . 8 |
68 | 64, 67 | raleqbidv 2682 | . . . . . . 7 |
69 | 64, 68 | raleqbidv 2682 | . . . . . 6 |
70 | 57, 63, 69 | 3bitr3d 218 | . . . . 5 |
71 | simplll 533 | . . . . . . . . . . 11 | |
72 | simplr 528 | . . . . . . . . . . 11 | |
73 | simpr 110 | . . . . . . . . . . 11 | |
74 | 26 | oveqrspc2v 5892 | . . . . . . . . . . 11 |
75 | 71, 72, 73, 74 | syl12anc 1236 | . . . . . . . . . 10 |
76 | 75 | eqeq1d 2184 | . . . . . . . . 9 |
77 | 26 | oveqrspc2v 5892 | . . . . . . . . . . 11 |
78 | 71, 73, 72, 77 | syl12anc 1236 | . . . . . . . . . 10 |
79 | 78 | eqeq1d 2184 | . . . . . . . . 9 |
80 | 76, 79 | anbi12d 473 | . . . . . . . 8 |
81 | 80 | ralbidva 2471 | . . . . . . 7 |
82 | 81 | rexbidva 2472 | . . . . . 6 |
83 | 58 | raleqdv 2676 | . . . . . . 7 |
84 | 58, 83 | rexeqbidv 2683 | . . . . . 6 |
85 | 64 | raleqdv 2676 | . . . . . . 7 |
86 | 64, 85 | rexeqbidv 2683 | . . . . . 6 |
87 | 82, 84, 86 | 3bitr3d 218 | . . . . 5 |
88 | 70, 87 | anbi12d 473 | . . . 4 |
89 | 8, 9 | ismnd 12686 | . . . 4 |
90 | 22, 23 | ismnd 12686 | . . . 4 |
91 | 88, 89, 90 | 3bitr4g 223 | . . 3 |
92 | 91 | ex 115 | . 2 |
93 | 14, 30, 92 | pm5.21ndd 705 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 wrex 2454 cfv 5208 (class class class)co 5865 cbs 12429 cplusg 12493 cmnd 12683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-inn 8893 df-2 8951 df-ndx 12432 df-slot 12433 df-base 12435 df-plusg 12506 df-mgm 12641 df-sgrp 12674 df-mnd 12684 |
This theorem is referenced by: mndprop 12708 mhmpropd 12720 grppropd 12755 cmnpropd 12897 ringpropd 13013 ring1 13032 |
Copyright terms: Public domain | W3C validator |