| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mndpropd | Unicode version | ||
| Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| mndpropd.1 | 
 | 
| mndpropd.2 | 
 | 
| mndpropd.3 | 
 | 
| Ref | Expression | 
|---|---|
| mndpropd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simplr 528 | 
. . . . . 6
 | |
| 2 | simprl 529 | 
. . . . . . 7
 | |
| 3 | mndpropd.1 | 
. . . . . . . 8
 | |
| 4 | 3 | ad2antrr 488 | 
. . . . . . 7
 | 
| 5 | 2, 4 | eleqtrd 2275 | 
. . . . . 6
 | 
| 6 | simprr 531 | 
. . . . . . 7
 | |
| 7 | 6, 4 | eleqtrd 2275 | 
. . . . . 6
 | 
| 8 | eqid 2196 | 
. . . . . . 7
 | |
| 9 | eqid 2196 | 
. . . . . . 7
 | |
| 10 | 8, 9 | mndcl 13064 | 
. . . . . 6
 | 
| 11 | 1, 5, 7, 10 | syl3anc 1249 | 
. . . . 5
 | 
| 12 | 11, 4 | eleqtrrd 2276 | 
. . . 4
 | 
| 13 | 12 | ralrimivva 2579 | 
. . 3
 | 
| 14 | 13 | ex 115 | 
. 2
 | 
| 15 | simplr 528 | 
. . . . . 6
 | |
| 16 | simprl 529 | 
. . . . . . 7
 | |
| 17 | mndpropd.2 | 
. . . . . . . 8
 | |
| 18 | 17 | ad2antrr 488 | 
. . . . . . 7
 | 
| 19 | 16, 18 | eleqtrd 2275 | 
. . . . . 6
 | 
| 20 | simprr 531 | 
. . . . . . 7
 | |
| 21 | 20, 18 | eleqtrd 2275 | 
. . . . . 6
 | 
| 22 | eqid 2196 | 
. . . . . . 7
 | |
| 23 | eqid 2196 | 
. . . . . . 7
 | |
| 24 | 22, 23 | mndcl 13064 | 
. . . . . 6
 | 
| 25 | 15, 19, 21, 24 | syl3anc 1249 | 
. . . . 5
 | 
| 26 | mndpropd.3 | 
. . . . . 6
 | |
| 27 | 26 | adantlr 477 | 
. . . . 5
 | 
| 28 | 25, 27, 18 | 3eltr4d 2280 | 
. . . 4
 | 
| 29 | 28 | ralrimivva 2579 | 
. . 3
 | 
| 30 | 29 | ex 115 | 
. 2
 | 
| 31 | 26 | oveqrspc2v 5949 | 
. . . . . . . . . 10
 | 
| 32 | 31 | adantlr 477 | 
. . . . . . . . 9
 | 
| 33 | 32 | eleq1d 2265 | 
. . . . . . . 8
 | 
| 34 | simplll 533 | 
. . . . . . . . . . . 12
 | |
| 35 | simplrl 535 | 
. . . . . . . . . . . . 13
 | |
| 36 | simplrr 536 | 
. . . . . . . . . . . . 13
 | |
| 37 | simpllr 534 | 
. . . . . . . . . . . . 13
 | |
| 38 | ovrspc2v 5948 | 
. . . . . . . . . . . . 13
 | |
| 39 | 35, 36, 37, 38 | syl21anc 1248 | 
. . . . . . . . . . . 12
 | 
| 40 | simpr 110 | 
. . . . . . . . . . . 12
 | |
| 41 | 26 | oveqrspc2v 5949 | 
. . . . . . . . . . . 12
 | 
| 42 | 34, 39, 40, 41 | syl12anc 1247 | 
. . . . . . . . . . 11
 | 
| 43 | 34, 35, 36, 31 | syl12anc 1247 | 
. . . . . . . . . . . 12
 | 
| 44 | 43 | oveq1d 5937 | 
. . . . . . . . . . 11
 | 
| 45 | 42, 44 | eqtrd 2229 | 
. . . . . . . . . 10
 | 
| 46 | ovrspc2v 5948 | 
. . . . . . . . . . . . 13
 | |
| 47 | 36, 40, 37, 46 | syl21anc 1248 | 
. . . . . . . . . . . 12
 | 
| 48 | 26 | oveqrspc2v 5949 | 
. . . . . . . . . . . 12
 | 
| 49 | 34, 35, 47, 48 | syl12anc 1247 | 
. . . . . . . . . . 11
 | 
| 50 | 26 | oveqrspc2v 5949 | 
. . . . . . . . . . . . 13
 | 
| 51 | 34, 36, 40, 50 | syl12anc 1247 | 
. . . . . . . . . . . 12
 | 
| 52 | 51 | oveq2d 5938 | 
. . . . . . . . . . 11
 | 
| 53 | 49, 52 | eqtrd 2229 | 
. . . . . . . . . 10
 | 
| 54 | 45, 53 | eqeq12d 2211 | 
. . . . . . . . 9
 | 
| 55 | 54 | ralbidva 2493 | 
. . . . . . . 8
 | 
| 56 | 33, 55 | anbi12d 473 | 
. . . . . . 7
 | 
| 57 | 56 | 2ralbidva 2519 | 
. . . . . 6
 | 
| 58 | 3 | adantr 276 | 
. . . . . . 7
 | 
| 59 | 58 | eleq2d 2266 | 
. . . . . . . . 9
 | 
| 60 | 58 | raleqdv 2699 | 
. . . . . . . . 9
 | 
| 61 | 59, 60 | anbi12d 473 | 
. . . . . . . 8
 | 
| 62 | 58, 61 | raleqbidv 2709 | 
. . . . . . 7
 | 
| 63 | 58, 62 | raleqbidv 2709 | 
. . . . . 6
 | 
| 64 | 17 | adantr 276 | 
. . . . . . 7
 | 
| 65 | 64 | eleq2d 2266 | 
. . . . . . . . 9
 | 
| 66 | 64 | raleqdv 2699 | 
. . . . . . . . 9
 | 
| 67 | 65, 66 | anbi12d 473 | 
. . . . . . . 8
 | 
| 68 | 64, 67 | raleqbidv 2709 | 
. . . . . . 7
 | 
| 69 | 64, 68 | raleqbidv 2709 | 
. . . . . 6
 | 
| 70 | 57, 63, 69 | 3bitr3d 218 | 
. . . . 5
 | 
| 71 | simplll 533 | 
. . . . . . . . . . 11
 | |
| 72 | simplr 528 | 
. . . . . . . . . . 11
 | |
| 73 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 74 | 26 | oveqrspc2v 5949 | 
. . . . . . . . . . 11
 | 
| 75 | 71, 72, 73, 74 | syl12anc 1247 | 
. . . . . . . . . 10
 | 
| 76 | 75 | eqeq1d 2205 | 
. . . . . . . . 9
 | 
| 77 | 26 | oveqrspc2v 5949 | 
. . . . . . . . . . 11
 | 
| 78 | 71, 73, 72, 77 | syl12anc 1247 | 
. . . . . . . . . 10
 | 
| 79 | 78 | eqeq1d 2205 | 
. . . . . . . . 9
 | 
| 80 | 76, 79 | anbi12d 473 | 
. . . . . . . 8
 | 
| 81 | 80 | ralbidva 2493 | 
. . . . . . 7
 | 
| 82 | 81 | rexbidva 2494 | 
. . . . . 6
 | 
| 83 | 58 | raleqdv 2699 | 
. . . . . . 7
 | 
| 84 | 58, 83 | rexeqbidv 2710 | 
. . . . . 6
 | 
| 85 | 64 | raleqdv 2699 | 
. . . . . . 7
 | 
| 86 | 64, 85 | rexeqbidv 2710 | 
. . . . . 6
 | 
| 87 | 82, 84, 86 | 3bitr3d 218 | 
. . . . 5
 | 
| 88 | 70, 87 | anbi12d 473 | 
. . . 4
 | 
| 89 | 8, 9 | ismnd 13060 | 
. . . 4
 | 
| 90 | 22, 23 | ismnd 13060 | 
. . . 4
 | 
| 91 | 88, 89, 90 | 3bitr4g 223 | 
. . 3
 | 
| 92 | 91 | ex 115 | 
. 2
 | 
| 93 | 14, 30, 92 | pm5.21ndd 706 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mgm 12999 df-sgrp 13045 df-mnd 13058 | 
| This theorem is referenced by: mndprop 13082 mhmpropd 13098 grppropd 13149 cmnpropd 13425 ringpropd 13594 ring1 13615 | 
| Copyright terms: Public domain | W3C validator |