| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismet2 | Unicode version | ||
| Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| ismet2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metrel 14814 |
. . 3
| |
| 2 | relelfvdm 5608 |
. . . 4
| |
| 3 | 2 | elexd 2785 |
. . 3
|
| 4 | 1, 3 | mpan 424 |
. 2
|
| 5 | xmetrel 14815 |
. . . . 5
| |
| 6 | relelfvdm 5608 |
. . . . 5
| |
| 7 | 5, 6 | mpan 424 |
. . . 4
|
| 8 | 7 | elexd 2785 |
. . 3
|
| 9 | 8 | adantr 276 |
. 2
|
| 10 | simpllr 534 |
. . . . . . . . . . . 12
| |
| 11 | simpr 110 |
. . . . . . . . . . . 12
| |
| 12 | simplrl 535 |
. . . . . . . . . . . 12
| |
| 13 | 10, 11, 12 | fovcdmd 6091 |
. . . . . . . . . . 11
|
| 14 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 15 | 10, 11, 14 | fovcdmd 6091 |
. . . . . . . . . . 11
|
| 16 | 13, 15 | rexaddd 9976 |
. . . . . . . . . 10
|
| 17 | 16 | breq2d 4056 |
. . . . . . . . 9
|
| 18 | 17 | ralbidva 2502 |
. . . . . . . 8
|
| 19 | 18 | anbi2d 464 |
. . . . . . 7
|
| 20 | 19 | 2ralbidva 2528 |
. . . . . 6
|
| 21 | simpr 110 |
. . . . . . . 8
| |
| 22 | ressxr 8116 |
. . . . . . . 8
| |
| 23 | fss 5437 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | sylancl 413 |
. . . . . . 7
|
| 25 | 24 | biantrurd 305 |
. . . . . 6
|
| 26 | 20, 25 | bitr3d 190 |
. . . . 5
|
| 27 | 26 | pm5.32da 452 |
. . . 4
|
| 28 | ancom 266 |
. . . 4
| |
| 29 | 27, 28 | bitrdi 196 |
. . 3
|
| 30 | ismet 14816 |
. . 3
| |
| 31 | isxmet 14817 |
. . . 4
| |
| 32 | 31 | anbi1d 465 |
. . 3
|
| 33 | 29, 30, 32 | 3bitr4d 220 |
. 2
|
| 34 | 4, 9, 33 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-rnegex 8034 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-map 6737 df-pnf 8109 df-mnf 8110 df-xr 8111 df-xadd 9895 df-xmet 14306 df-met 14307 |
| This theorem is referenced by: metxmet 14827 metres2 14853 xmetresbl 14912 bdmet 14974 |
| Copyright terms: Public domain | W3C validator |