ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismet2 Unicode version

Theorem ismet2 14522
Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ismet2  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )

Proof of Theorem ismet2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metrel 14510 . . 3  |-  Rel  Met
2 relelfvdm 5586 . . . 4  |-  ( ( Rel  Met  /\  D  e.  ( Met `  X
) )  ->  X  e.  dom  Met )
32elexd 2773 . . 3  |-  ( ( Rel  Met  /\  D  e.  ( Met `  X
) )  ->  X  e.  _V )
41, 3mpan 424 . 2  |-  ( D  e.  ( Met `  X
)  ->  X  e.  _V )
5 xmetrel 14511 . . . . 5  |-  Rel  *Met
6 relelfvdm 5586 . . . . 5  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
75, 6mpan 424 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
87elexd 2773 . . 3  |-  ( D  e.  ( *Met `  X )  ->  X  e.  _V )
98adantr 276 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR )  ->  X  e.  _V )
10 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  D : ( X  X.  X ) --> RR )
11 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  z  e.  X )
12 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  x  e.  X )
1310, 11, 12fovcdmd 6063 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
z D x )  e.  RR )
14 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  y  e.  X )
1510, 11, 14fovcdmd 6063 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
z D y )  e.  RR )
1613, 15rexaddd 9920 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
( z D x ) +e ( z D y ) )  =  ( ( z D x )  +  ( z D y ) ) )
1716breq2d 4041 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
( x D y )  <_  ( (
z D x ) +e ( z D y ) )  <-> 
( x D y )  <_  ( (
z D x )  +  ( z D y ) ) ) )
1817ralbidva 2490 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) )  <->  A. z  e.  X  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) ) )
1918anbi2d 464 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) )  <-> 
( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) ) )
20192ralbidva 2516 . . . . . 6  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) ) )
21 simpr 110 . . . . . . . 8  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  D : ( X  X.  X ) --> RR )
22 ressxr 8063 . . . . . . . 8  |-  RR  C_  RR*
23 fss 5415 . . . . . . . 8  |-  ( ( D : ( X  X.  X ) --> RR 
/\  RR  C_  RR* )  ->  D : ( X  X.  X ) --> RR* )
2421, 22, 23sylancl 413 . . . . . . 7  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  D : ( X  X.  X ) -->
RR* )
2524biantrurd 305 . . . . . 6  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) )  <-> 
( D : ( X  X.  X ) -->
RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
2620, 25bitr3d 190 . . . . 5  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
2726pm5.32da 452 . . . 4  |-  ( X  e.  _V  ->  (
( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) )  <-> 
( D : ( X  X.  X ) --> RR  /\  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) ) )
28 ancom 266 . . . 4  |-  ( ( D : ( X  X.  X ) --> RR 
/\  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )  <->  ( ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) )  /\  D : ( X  X.  X ) --> RR ) )
2927, 28bitrdi 196 . . 3  |-  ( X  e.  _V  ->  (
( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) )  <-> 
( ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) )  /\  D :
( X  X.  X
) --> RR ) ) )
30 ismet 14512 . . 3  |-  ( X  e.  _V  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
31 isxmet 14513 . . . 4  |-  ( X  e.  _V  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
3231anbi1d 465 . . 3  |-  ( X  e.  _V  ->  (
( D  e.  ( *Met `  X
)  /\  D :
( X  X.  X
) --> RR )  <->  ( ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) )  /\  D : ( X  X.  X ) --> RR ) ) )
3329, 30, 323bitr4d 220 . 2  |-  ( X  e.  _V  ->  ( D  e.  ( Met `  X )  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) ) )
344, 9, 33pm5.21nii 705 1  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3153   class class class wbr 4029    X. cxp 4657   dom cdm 4659   Rel wrel 4664   -->wf 5250   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872    + caddc 7875   RR*cxr 8053    <_ cle 8055   +ecxad 9836   *Metcxmet 14032   Metcmet 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-rnegex 7981
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-xadd 9839  df-xmet 14040  df-met 14041
This theorem is referenced by:  metxmet  14523  metres2  14549  xmetresbl  14608  bdmet  14670
  Copyright terms: Public domain W3C validator