Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismet2 | Unicode version |
Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
ismet2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metrel 12982 | . . 3 | |
2 | relelfvdm 5518 | . . . 4 | |
3 | 2 | elexd 2739 | . . 3 |
4 | 1, 3 | mpan 421 | . 2 |
5 | xmetrel 12983 | . . . . 5 | |
6 | relelfvdm 5518 | . . . . 5 | |
7 | 5, 6 | mpan 421 | . . . 4 |
8 | 7 | elexd 2739 | . . 3 |
9 | 8 | adantr 274 | . 2 |
10 | simpllr 524 | . . . . . . . . . . . 12 | |
11 | simpr 109 | . . . . . . . . . . . 12 | |
12 | simplrl 525 | . . . . . . . . . . . 12 | |
13 | 10, 11, 12 | fovrnd 5986 | . . . . . . . . . . 11 |
14 | simplrr 526 | . . . . . . . . . . . 12 | |
15 | 10, 11, 14 | fovrnd 5986 | . . . . . . . . . . 11 |
16 | 13, 15 | rexaddd 9790 | . . . . . . . . . 10 |
17 | 16 | breq2d 3994 | . . . . . . . . 9 |
18 | 17 | ralbidva 2462 | . . . . . . . 8 |
19 | 18 | anbi2d 460 | . . . . . . 7 |
20 | 19 | 2ralbidva 2488 | . . . . . 6 |
21 | simpr 109 | . . . . . . . 8 | |
22 | ressxr 7942 | . . . . . . . 8 | |
23 | fss 5349 | . . . . . . . 8 | |
24 | 21, 22, 23 | sylancl 410 | . . . . . . 7 |
25 | 24 | biantrurd 303 | . . . . . 6 |
26 | 20, 25 | bitr3d 189 | . . . . 5 |
27 | 26 | pm5.32da 448 | . . . 4 |
28 | ancom 264 | . . . 4 | |
29 | 27, 28 | bitrdi 195 | . . 3 |
30 | ismet 12984 | . . 3 | |
31 | isxmet 12985 | . . . 4 | |
32 | 31 | anbi1d 461 | . . 3 |
33 | 29, 30, 32 | 3bitr4d 219 | . 2 |
34 | 4, 9, 33 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 cvv 2726 wss 3116 class class class wbr 3982 cxp 4602 cdm 4604 wrel 4609 wf 5184 cfv 5188 (class class class)co 5842 cr 7752 cc0 7753 caddc 7756 cxr 7932 cle 7934 cxad 9706 cxmet 12620 cmet 12621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-xadd 9709 df-xmet 12628 df-met 12629 |
This theorem is referenced by: metxmet 12995 metres2 13021 xmetresbl 13080 bdmet 13142 |
Copyright terms: Public domain | W3C validator |