| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismet2 | Unicode version | ||
| Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| ismet2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metrel 14929 |
. . 3
| |
| 2 | relelfvdm 5631 |
. . . 4
| |
| 3 | 2 | elexd 2790 |
. . 3
|
| 4 | 1, 3 | mpan 424 |
. 2
|
| 5 | xmetrel 14930 |
. . . . 5
| |
| 6 | relelfvdm 5631 |
. . . . 5
| |
| 7 | 5, 6 | mpan 424 |
. . . 4
|
| 8 | 7 | elexd 2790 |
. . 3
|
| 9 | 8 | adantr 276 |
. 2
|
| 10 | simpllr 534 |
. . . . . . . . . . . 12
| |
| 11 | simpr 110 |
. . . . . . . . . . . 12
| |
| 12 | simplrl 535 |
. . . . . . . . . . . 12
| |
| 13 | 10, 11, 12 | fovcdmd 6114 |
. . . . . . . . . . 11
|
| 14 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 15 | 10, 11, 14 | fovcdmd 6114 |
. . . . . . . . . . 11
|
| 16 | 13, 15 | rexaddd 10011 |
. . . . . . . . . 10
|
| 17 | 16 | breq2d 4071 |
. . . . . . . . 9
|
| 18 | 17 | ralbidva 2504 |
. . . . . . . 8
|
| 19 | 18 | anbi2d 464 |
. . . . . . 7
|
| 20 | 19 | 2ralbidva 2530 |
. . . . . 6
|
| 21 | simpr 110 |
. . . . . . . 8
| |
| 22 | ressxr 8151 |
. . . . . . . 8
| |
| 23 | fss 5457 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | sylancl 413 |
. . . . . . 7
|
| 25 | 24 | biantrurd 305 |
. . . . . 6
|
| 26 | 20, 25 | bitr3d 190 |
. . . . 5
|
| 27 | 26 | pm5.32da 452 |
. . . 4
|
| 28 | ancom 266 |
. . . 4
| |
| 29 | 27, 28 | bitrdi 196 |
. . 3
|
| 30 | ismet 14931 |
. . 3
| |
| 31 | isxmet 14932 |
. . . 4
| |
| 32 | 31 | anbi1d 465 |
. . 3
|
| 33 | 29, 30, 32 | 3bitr4d 220 |
. 2
|
| 34 | 4, 9, 33 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-pnf 8144 df-mnf 8145 df-xr 8146 df-xadd 9930 df-xmet 14421 df-met 14422 |
| This theorem is referenced by: metxmet 14942 metres2 14968 xmetresbl 15027 bdmet 15089 |
| Copyright terms: Public domain | W3C validator |