ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismet2 Unicode version

Theorem ismet2 14941
Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ismet2  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )

Proof of Theorem ismet2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metrel 14929 . . 3  |-  Rel  Met
2 relelfvdm 5631 . . . 4  |-  ( ( Rel  Met  /\  D  e.  ( Met `  X
) )  ->  X  e.  dom  Met )
32elexd 2790 . . 3  |-  ( ( Rel  Met  /\  D  e.  ( Met `  X
) )  ->  X  e.  _V )
41, 3mpan 424 . 2  |-  ( D  e.  ( Met `  X
)  ->  X  e.  _V )
5 xmetrel 14930 . . . . 5  |-  Rel  *Met
6 relelfvdm 5631 . . . . 5  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
75, 6mpan 424 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
87elexd 2790 . . 3  |-  ( D  e.  ( *Met `  X )  ->  X  e.  _V )
98adantr 276 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR )  ->  X  e.  _V )
10 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  D : ( X  X.  X ) --> RR )
11 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  z  e.  X )
12 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  x  e.  X )
1310, 11, 12fovcdmd 6114 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
z D x )  e.  RR )
14 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  y  e.  X )
1510, 11, 14fovcdmd 6114 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
z D y )  e.  RR )
1613, 15rexaddd 10011 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
( z D x ) +e ( z D y ) )  =  ( ( z D x )  +  ( z D y ) ) )
1716breq2d 4071 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  D :
( X  X.  X
) --> RR )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
( x D y )  <_  ( (
z D x ) +e ( z D y ) )  <-> 
( x D y )  <_  ( (
z D x )  +  ( z D y ) ) ) )
1817ralbidva 2504 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) )  <->  A. z  e.  X  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) ) )
1918anbi2d 464 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) )  <-> 
( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) ) )
20192ralbidva 2530 . . . . . 6  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) ) )
21 simpr 110 . . . . . . . 8  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  D : ( X  X.  X ) --> RR )
22 ressxr 8151 . . . . . . . 8  |-  RR  C_  RR*
23 fss 5457 . . . . . . . 8  |-  ( ( D : ( X  X.  X ) --> RR 
/\  RR  C_  RR* )  ->  D : ( X  X.  X ) --> RR* )
2421, 22, 23sylancl 413 . . . . . . 7  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  D : ( X  X.  X ) -->
RR* )
2524biantrurd 305 . . . . . 6  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) )  <-> 
( D : ( X  X.  X ) -->
RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
2620, 25bitr3d 190 . . . . 5  |-  ( ( X  e.  _V  /\  D : ( X  X.  X ) --> RR )  ->  ( A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
2726pm5.32da 452 . . . 4  |-  ( X  e.  _V  ->  (
( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) )  <-> 
( D : ( X  X.  X ) --> RR  /\  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) ) )
28 ancom 266 . . . 4  |-  ( ( D : ( X  X.  X ) --> RR 
/\  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )  <->  ( ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) )  /\  D : ( X  X.  X ) --> RR ) )
2927, 28bitrdi 196 . . 3  |-  ( X  e.  _V  ->  (
( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) )  <-> 
( ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) )  /\  D :
( X  X.  X
) --> RR ) ) )
30 ismet 14931 . . 3  |-  ( X  e.  _V  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
31 isxmet 14932 . . . 4  |-  ( X  e.  _V  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
3231anbi1d 465 . . 3  |-  ( X  e.  _V  ->  (
( D  e.  ( *Met `  X
)  /\  D :
( X  X.  X
) --> RR )  <->  ( ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) )  /\  D : ( X  X.  X ) --> RR ) ) )
3329, 30, 323bitr4d 220 . 2  |-  ( X  e.  _V  ->  ( D  e.  ( Met `  X )  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) ) )
344, 9, 33pm5.21nii 706 1  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776    C_ wss 3174   class class class wbr 4059    X. cxp 4691   dom cdm 4693   Rel wrel 4698   -->wf 5286   ` cfv 5290  (class class class)co 5967   RRcr 7959   0cc0 7960    + caddc 7963   RR*cxr 8141    <_ cle 8143   +ecxad 9927   *Metcxmet 14413   Metcmet 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057  ax-rnegex 8069
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-xadd 9930  df-xmet 14421  df-met 14422
This theorem is referenced by:  metxmet  14942  metres2  14968  xmetresbl  15027  bdmet  15089
  Copyright terms: Public domain W3C validator