| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismet2 | Unicode version | ||
| Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| ismet2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metrel 15010 |
. . 3
| |
| 2 | relelfvdm 5658 |
. . . 4
| |
| 3 | 2 | elexd 2813 |
. . 3
|
| 4 | 1, 3 | mpan 424 |
. 2
|
| 5 | xmetrel 15011 |
. . . . 5
| |
| 6 | relelfvdm 5658 |
. . . . 5
| |
| 7 | 5, 6 | mpan 424 |
. . . 4
|
| 8 | 7 | elexd 2813 |
. . 3
|
| 9 | 8 | adantr 276 |
. 2
|
| 10 | simpllr 534 |
. . . . . . . . . . . 12
| |
| 11 | simpr 110 |
. . . . . . . . . . . 12
| |
| 12 | simplrl 535 |
. . . . . . . . . . . 12
| |
| 13 | 10, 11, 12 | fovcdmd 6149 |
. . . . . . . . . . 11
|
| 14 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 15 | 10, 11, 14 | fovcdmd 6149 |
. . . . . . . . . . 11
|
| 16 | 13, 15 | rexaddd 10046 |
. . . . . . . . . 10
|
| 17 | 16 | breq2d 4094 |
. . . . . . . . 9
|
| 18 | 17 | ralbidva 2526 |
. . . . . . . 8
|
| 19 | 18 | anbi2d 464 |
. . . . . . 7
|
| 20 | 19 | 2ralbidva 2552 |
. . . . . 6
|
| 21 | simpr 110 |
. . . . . . . 8
| |
| 22 | ressxr 8186 |
. . . . . . . 8
| |
| 23 | fss 5484 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | sylancl 413 |
. . . . . . 7
|
| 25 | 24 | biantrurd 305 |
. . . . . 6
|
| 26 | 20, 25 | bitr3d 190 |
. . . . 5
|
| 27 | 26 | pm5.32da 452 |
. . . 4
|
| 28 | ancom 266 |
. . . 4
| |
| 29 | 27, 28 | bitrdi 196 |
. . 3
|
| 30 | ismet 15012 |
. . 3
| |
| 31 | isxmet 15013 |
. . . 4
| |
| 32 | 31 | anbi1d 465 |
. . 3
|
| 33 | 29, 30, 32 | 3bitr4d 220 |
. 2
|
| 34 | 4, 9, 33 | pm5.21nii 709 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-pnf 8179 df-mnf 8180 df-xr 8181 df-xadd 9965 df-xmet 14502 df-met 14503 |
| This theorem is referenced by: metxmet 15023 metres2 15049 xmetresbl 15108 bdmet 15170 |
| Copyright terms: Public domain | W3C validator |