| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2ri | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 |
|
| 3bitr2i.2 |
|
| 3bitr2i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr2ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 |
. . 3
| |
| 2 | 3bitr2i.2 |
. . 3
| |
| 3 | 1, 2 | bitr4i 187 |
. 2
|
| 4 | 3bitr2i.3 |
. 2
| |
| 5 | 3, 4 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbnf2 2000 ssrab 3261 rabn0m 3478 unidif0 4200 relop 4816 dmopab3 4879 restidsing 5002 issref 5052 fununi 5326 cnvoprab 6292 ssfirab 6997 |
| Copyright terms: Public domain | W3C validator |