![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr2i | Unicode version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr2i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr2i.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr2i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr2i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitr4i 186 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr2i.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitri 183 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: an13 535 sbanv 1843 sbexyz 1954 exists1 2071 euxfrdc 2839 euind 2840 rmo4 2846 rmo3f 2850 rmo3 2968 ddifstab 3174 opm 4116 uniuni 4332 rabxp 4536 eliunxp 4638 dmmrnm 4718 imadisj 4859 intirr 4883 resco 5001 funcnv3 5143 fncnv 5147 fun11 5148 fununi 5149 f1mpt 5626 mpomptx 5816 ixp0x 6574 mapsnen 6659 xpcomco 6673 enq0tr 7190 elq 9316 ntreq0 12144 tx1cn 12280 |
Copyright terms: Public domain | W3C validator |