ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr2i Unicode version

Theorem 3bitr2i 208
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr2i.1  |-  ( ph  <->  ps )
3bitr2i.2  |-  ( ch  <->  ps )
3bitr2i.3  |-  ( ch  <->  th )
Assertion
Ref Expression
3bitr2i  |-  ( ph  <->  th )

Proof of Theorem 3bitr2i
StepHypRef Expression
1 3bitr2i.1 . . 3  |-  ( ph  <->  ps )
2 3bitr2i.2 . . 3  |-  ( ch  <->  ps )
31, 2bitr4i 187 . 2  |-  ( ph  <->  ch )
4 3bitr2i.3 . 2  |-  ( ch  <->  th )
53, 4bitri 184 1  |-  ( ph  <->  th )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  an13  563  sbanv  1936  sbexyz  2054  exists1  2174  euxfrdc  2989  euind  2990  rmo4  2996  rmo3f  3000  rmo3  3121  ddifstab  3336  opm  4319  uniuni  4541  rabxp  4755  eliunxp  4860  dmmrnm  4942  imadisj  5089  intirr  5114  resco  5232  funcnv3  5382  fncnv  5386  fun11  5387  fununi  5388  f1mpt  5894  mpomptx  6094  ixp0x  6871  mapsnen  6962  xpcomco  6981  enq0tr  7617  elq  9813  bitsmod  12462  pythagtrip  12801  ntreq0  14800  tx1cn  14937
  Copyright terms: Public domain W3C validator