| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2i | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 |
|
| 3bitr2i.2 |
|
| 3bitr2i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 |
. . 3
| |
| 2 | 3bitr2i.2 |
. . 3
| |
| 3 | 1, 2 | bitr4i 187 |
. 2
|
| 4 | 3bitr2i.3 |
. 2
| |
| 5 | 3, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an13 563 sbanv 1936 sbexyz 2054 exists1 2174 euxfrdc 2989 euind 2990 rmo4 2996 rmo3f 3000 rmo3 3121 ddifstab 3336 opm 4319 uniuni 4541 rabxp 4755 eliunxp 4860 dmmrnm 4942 imadisj 5089 intirr 5114 resco 5232 funcnv3 5382 fncnv 5386 fun11 5387 fununi 5388 f1mpt 5894 mpomptx 6094 ixp0x 6871 mapsnen 6962 xpcomco 6981 enq0tr 7617 elq 9813 bitsmod 12462 pythagtrip 12801 ntreq0 14800 tx1cn 14937 |
| Copyright terms: Public domain | W3C validator |