| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2i | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 |
|
| 3bitr2i.2 |
|
| 3bitr2i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 |
. . 3
| |
| 2 | 3bitr2i.2 |
. . 3
| |
| 3 | 1, 2 | bitr4i 187 |
. 2
|
| 4 | 3bitr2i.3 |
. 2
| |
| 5 | 3, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an13 563 sbanv 1914 sbexyz 2032 exists1 2152 euxfrdc 2966 euind 2967 rmo4 2973 rmo3f 2977 rmo3 3098 ddifstab 3313 opm 4296 uniuni 4516 rabxp 4730 eliunxp 4835 dmmrnm 4916 imadisj 5063 intirr 5088 resco 5206 funcnv3 5355 fncnv 5359 fun11 5360 fununi 5361 f1mpt 5863 mpomptx 6059 ixp0x 6836 mapsnen 6927 xpcomco 6946 enq0tr 7582 elq 9778 bitsmod 12382 pythagtrip 12721 ntreq0 14719 tx1cn 14856 |
| Copyright terms: Public domain | W3C validator |