| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2i | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 |
|
| 3bitr2i.2 |
|
| 3bitr2i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 |
. . 3
| |
| 2 | 3bitr2i.2 |
. . 3
| |
| 3 | 1, 2 | bitr4i 187 |
. 2
|
| 4 | 3bitr2i.3 |
. 2
| |
| 5 | 3, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an13 563 sbanv 1913 sbexyz 2031 exists1 2150 euxfrdc 2959 euind 2960 rmo4 2966 rmo3f 2970 rmo3 3090 ddifstab 3305 opm 4278 uniuni 4498 rabxp 4712 eliunxp 4817 dmmrnm 4897 imadisj 5044 intirr 5069 resco 5187 funcnv3 5336 fncnv 5340 fun11 5341 fununi 5342 f1mpt 5840 mpomptx 6036 ixp0x 6813 mapsnen 6903 xpcomco 6921 enq0tr 7547 elq 9743 bitsmod 12267 pythagtrip 12606 ntreq0 14604 tx1cn 14741 |
| Copyright terms: Public domain | W3C validator |