| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2i | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 |
|
| 3bitr2i.2 |
|
| 3bitr2i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 |
. . 3
| |
| 2 | 3bitr2i.2 |
. . 3
| |
| 3 | 1, 2 | bitr4i 187 |
. 2
|
| 4 | 3bitr2i.3 |
. 2
| |
| 5 | 3, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an13 563 sbanv 1904 sbexyz 2022 exists1 2141 euxfrdc 2950 euind 2951 rmo4 2957 rmo3f 2961 rmo3 3081 ddifstab 3296 opm 4268 uniuni 4487 rabxp 4701 eliunxp 4806 dmmrnm 4886 imadisj 5032 intirr 5057 resco 5175 funcnv3 5321 fncnv 5325 fun11 5326 fununi 5327 f1mpt 5821 mpomptx 6017 ixp0x 6794 mapsnen 6879 xpcomco 6894 enq0tr 7518 elq 9713 bitsmod 12138 pythagtrip 12477 ntreq0 14452 tx1cn 14589 |
| Copyright terms: Public domain | W3C validator |