| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restidsing | Unicode version | ||
| Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
| Ref | Expression |
|---|---|
| restidsing |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5032 |
. 2
| |
| 2 | relxp 4827 |
. 2
| |
| 3 | velsn 3683 |
. . . . 5
| |
| 4 | velsn 3683 |
. . . . 5
| |
| 5 | 3, 4 | anbi12i 460 |
. . . 4
|
| 6 | vex 2802 |
. . . . . . 7
| |
| 7 | 6 | ideq 4873 |
. . . . . 6
|
| 8 | 3, 7 | anbi12i 460 |
. . . . 5
|
| 9 | eqeq1 2236 |
. . . . . . 7
| |
| 10 | eqcom 2231 |
. . . . . . 7
| |
| 11 | 9, 10 | bitrdi 196 |
. . . . . 6
|
| 12 | 11 | pm5.32i 454 |
. . . . 5
|
| 13 | 8, 12 | bitri 184 |
. . . 4
|
| 14 | df-br 4083 |
. . . . 5
| |
| 15 | 14 | anbi2i 457 |
. . . 4
|
| 16 | 5, 13, 15 | 3bitr2ri 209 |
. . 3
|
| 17 | 6 | opelres 5009 |
. . . 4
|
| 18 | 17 | biancomi 270 |
. . 3
|
| 19 | opelxp 4748 |
. . 3
| |
| 20 | 16, 18, 19 | 3bitr4i 212 |
. 2
|
| 21 | 1, 2, 20 | eqrelriiv 4812 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-res 4730 |
| This theorem is referenced by: grp1inv 13635 |
| Copyright terms: Public domain | W3C validator |