| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restidsing | Unicode version | ||
| Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
| Ref | Expression |
|---|---|
| restidsing |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4974 |
. 2
| |
| 2 | relxp 4772 |
. 2
| |
| 3 | velsn 3639 |
. . . . 5
| |
| 4 | velsn 3639 |
. . . . 5
| |
| 5 | 3, 4 | anbi12i 460 |
. . . 4
|
| 6 | vex 2766 |
. . . . . . 7
| |
| 7 | 6 | ideq 4818 |
. . . . . 6
|
| 8 | 3, 7 | anbi12i 460 |
. . . . 5
|
| 9 | eqeq1 2203 |
. . . . . . 7
| |
| 10 | eqcom 2198 |
. . . . . . 7
| |
| 11 | 9, 10 | bitrdi 196 |
. . . . . 6
|
| 12 | 11 | pm5.32i 454 |
. . . . 5
|
| 13 | 8, 12 | bitri 184 |
. . . 4
|
| 14 | df-br 4034 |
. . . . 5
| |
| 15 | 14 | anbi2i 457 |
. . . 4
|
| 16 | 5, 13, 15 | 3bitr2ri 209 |
. . 3
|
| 17 | 6 | opelres 4951 |
. . . 4
|
| 18 | 17 | biancomi 270 |
. . 3
|
| 19 | opelxp 4693 |
. . 3
| |
| 20 | 16, 18, 19 | 3bitr4i 212 |
. 2
|
| 21 | 1, 2, 20 | eqrelriiv 4757 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-res 4675 |
| This theorem is referenced by: grp1inv 13239 |
| Copyright terms: Public domain | W3C validator |