| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restidsing | Unicode version | ||
| Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
| Ref | Expression |
|---|---|
| restidsing |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4984 |
. 2
| |
| 2 | relxp 4782 |
. 2
| |
| 3 | velsn 3649 |
. . . . 5
| |
| 4 | velsn 3649 |
. . . . 5
| |
| 5 | 3, 4 | anbi12i 460 |
. . . 4
|
| 6 | vex 2774 |
. . . . . . 7
| |
| 7 | 6 | ideq 4828 |
. . . . . 6
|
| 8 | 3, 7 | anbi12i 460 |
. . . . 5
|
| 9 | eqeq1 2211 |
. . . . . . 7
| |
| 10 | eqcom 2206 |
. . . . . . 7
| |
| 11 | 9, 10 | bitrdi 196 |
. . . . . 6
|
| 12 | 11 | pm5.32i 454 |
. . . . 5
|
| 13 | 8, 12 | bitri 184 |
. . . 4
|
| 14 | df-br 4044 |
. . . . 5
| |
| 15 | 14 | anbi2i 457 |
. . . 4
|
| 16 | 5, 13, 15 | 3bitr2ri 209 |
. . 3
|
| 17 | 6 | opelres 4961 |
. . . 4
|
| 18 | 17 | biancomi 270 |
. . 3
|
| 19 | opelxp 4703 |
. . 3
| |
| 20 | 16, 18, 19 | 3bitr4i 212 |
. 2
|
| 21 | 1, 2, 20 | eqrelriiv 4767 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-res 4685 |
| This theorem is referenced by: grp1inv 13357 |
| Copyright terms: Public domain | W3C validator |