ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restidsing Unicode version

Theorem restidsing 5002
Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.)
Assertion
Ref Expression
restidsing  |-  (  _I  |`  { A } )  =  ( { A }  X.  { A }
)

Proof of Theorem restidsing
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4974 . 2  |-  Rel  (  _I  |`  { A }
)
2 relxp 4772 . 2  |-  Rel  ( { A }  X.  { A } )
3 velsn 3639 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
4 velsn 3639 . . . . 5  |-  ( y  e.  { A }  <->  y  =  A )
53, 4anbi12i 460 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  <->  ( x  =  A  /\  y  =  A ) )
6 vex 2766 . . . . . . 7  |-  y  e. 
_V
76ideq 4818 . . . . . 6  |-  ( x  _I  y  <->  x  =  y )
83, 7anbi12i 460 . . . . 5  |-  ( ( x  e.  { A }  /\  x  _I  y
)  <->  ( x  =  A  /\  x  =  y ) )
9 eqeq1 2203 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  y  <->  A  =  y ) )
10 eqcom 2198 . . . . . . 7  |-  ( A  =  y  <->  y  =  A )
119, 10bitrdi 196 . . . . . 6  |-  ( x  =  A  ->  (
x  =  y  <->  y  =  A ) )
1211pm5.32i 454 . . . . 5  |-  ( ( x  =  A  /\  x  =  y )  <->  ( x  =  A  /\  y  =  A )
)
138, 12bitri 184 . . . 4  |-  ( ( x  e.  { A }  /\  x  _I  y
)  <->  ( x  =  A  /\  y  =  A ) )
14 df-br 4034 . . . . 5  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
1514anbi2i 457 . . . 4  |-  ( ( x  e.  { A }  /\  x  _I  y
)  <->  ( x  e. 
{ A }  /\  <.
x ,  y >.  e.  _I  ) )
165, 13, 153bitr2ri 209 . . 3  |-  ( ( x  e.  { A }  /\  <. x ,  y
>.  e.  _I  )  <->  ( x  e.  { A }  /\  y  e.  { A } ) )
176opelres 4951 . . . 4  |-  ( <.
x ,  y >.  e.  (  _I  |`  { A } )  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  { A } ) )
1817biancomi 270 . . 3  |-  ( <.
x ,  y >.  e.  (  _I  |`  { A } )  <->  ( x  e.  { A }  /\  <.
x ,  y >.  e.  _I  ) )
19 opelxp 4693 . . 3  |-  ( <.
x ,  y >.  e.  ( { A }  X.  { A } )  <-> 
( x  e.  { A }  /\  y  e.  { A } ) )
2016, 18, 193bitr4i 212 . 2  |-  ( <.
x ,  y >.  e.  (  _I  |`  { A } )  <->  <. x ,  y >.  e.  ( { A }  X.  { A } ) )
211, 2, 20eqrelriiv 4757 1  |-  (  _I  |`  { A } )  =  ( { A }  X.  { A }
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167   {csn 3622   <.cop 3625   class class class wbr 4033    _I cid 4323    X. cxp 4661    |` cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-res 4675
This theorem is referenced by:  grp1inv  13239
  Copyright terms: Public domain W3C validator