ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restidsing Unicode version

Theorem restidsing 4948
Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.)
Assertion
Ref Expression
restidsing  |-  (  _I  |`  { A } )  =  ( { A }  X.  { A }
)

Proof of Theorem restidsing
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4920 . 2  |-  Rel  (  _I  |`  { A }
)
2 relxp 4721 . 2  |-  Rel  ( { A }  X.  { A } )
3 velsn 3601 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
4 velsn 3601 . . . . 5  |-  ( y  e.  { A }  <->  y  =  A )
53, 4anbi12i 458 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  <->  ( x  =  A  /\  y  =  A ) )
6 vex 2734 . . . . . . 7  |-  y  e. 
_V
76ideq 4764 . . . . . 6  |-  ( x  _I  y  <->  x  =  y )
83, 7anbi12i 458 . . . . 5  |-  ( ( x  e.  { A }  /\  x  _I  y
)  <->  ( x  =  A  /\  x  =  y ) )
9 eqeq1 2178 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  y  <->  A  =  y ) )
10 eqcom 2173 . . . . . . 7  |-  ( A  =  y  <->  y  =  A )
119, 10bitrdi 195 . . . . . 6  |-  ( x  =  A  ->  (
x  =  y  <->  y  =  A ) )
1211pm5.32i 452 . . . . 5  |-  ( ( x  =  A  /\  x  =  y )  <->  ( x  =  A  /\  y  =  A )
)
138, 12bitri 183 . . . 4  |-  ( ( x  e.  { A }  /\  x  _I  y
)  <->  ( x  =  A  /\  y  =  A ) )
14 df-br 3991 . . . . 5  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
1514anbi2i 455 . . . 4  |-  ( ( x  e.  { A }  /\  x  _I  y
)  <->  ( x  e. 
{ A }  /\  <.
x ,  y >.  e.  _I  ) )
165, 13, 153bitr2ri 208 . . 3  |-  ( ( x  e.  { A }  /\  <. x ,  y
>.  e.  _I  )  <->  ( x  e.  { A }  /\  y  e.  { A } ) )
176opelres 4897 . . . 4  |-  ( <.
x ,  y >.  e.  (  _I  |`  { A } )  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  { A } ) )
1817biancomi 268 . . 3  |-  ( <.
x ,  y >.  e.  (  _I  |`  { A } )  <->  ( x  e.  { A }  /\  <.
x ,  y >.  e.  _I  ) )
19 opelxp 4642 . . 3  |-  ( <.
x ,  y >.  e.  ( { A }  X.  { A } )  <-> 
( x  e.  { A }  /\  y  e.  { A } ) )
2016, 18, 193bitr4i 211 . 2  |-  ( <.
x ,  y >.  e.  (  _I  |`  { A } )  <->  <. x ,  y >.  e.  ( { A }  X.  { A } ) )
211, 2, 20eqrelriiv 4706 1  |-  (  _I  |`  { A } )  =  ( { A }  X.  { A }
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1349    e. wcel 2142   {csn 3584   <.cop 3587   class class class wbr 3990    _I cid 4274    X. cxp 4610    |` cres 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-14 2145  ax-ext 2153  ax-sep 4108  ax-pow 4161  ax-pr 4195
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ral 2454  df-rex 2455  df-v 2733  df-un 3126  df-in 3128  df-ss 3135  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-br 3991  df-opab 4052  df-id 4279  df-xp 4618  df-rel 4619  df-res 4624
This theorem is referenced by:  grp1inv  12828
  Copyright terms: Public domain W3C validator