Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > restidsing | Unicode version |
Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
Ref | Expression |
---|---|
restidsing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4920 | . 2 | |
2 | relxp 4721 | . 2 | |
3 | velsn 3601 | . . . . 5 | |
4 | velsn 3601 | . . . . 5 | |
5 | 3, 4 | anbi12i 458 | . . . 4 |
6 | vex 2734 | . . . . . . 7 | |
7 | 6 | ideq 4764 | . . . . . 6 |
8 | 3, 7 | anbi12i 458 | . . . . 5 |
9 | eqeq1 2178 | . . . . . . 7 | |
10 | eqcom 2173 | . . . . . . 7 | |
11 | 9, 10 | bitrdi 195 | . . . . . 6 |
12 | 11 | pm5.32i 452 | . . . . 5 |
13 | 8, 12 | bitri 183 | . . . 4 |
14 | df-br 3991 | . . . . 5 | |
15 | 14 | anbi2i 455 | . . . 4 |
16 | 5, 13, 15 | 3bitr2ri 208 | . . 3 |
17 | 6 | opelres 4897 | . . . 4 |
18 | 17 | biancomi 268 | . . 3 |
19 | opelxp 4642 | . . 3 | |
20 | 16, 18, 19 | 3bitr4i 211 | . 2 |
21 | 1, 2, 20 | eqrelriiv 4706 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1349 wcel 2142 csn 3584 cop 3587 class class class wbr 3990 cid 4274 cxp 4610 cres 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-pow 4161 ax-pr 4195 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-v 2733 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-br 3991 df-opab 4052 df-id 4279 df-xp 4618 df-rel 4619 df-res 4624 |
This theorem is referenced by: grp1inv 12828 |
Copyright terms: Public domain | W3C validator |