| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restidsing | Unicode version | ||
| Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
| Ref | Expression |
|---|---|
| restidsing |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4996 |
. 2
| |
| 2 | relxp 4792 |
. 2
| |
| 3 | velsn 3655 |
. . . . 5
| |
| 4 | velsn 3655 |
. . . . 5
| |
| 5 | 3, 4 | anbi12i 460 |
. . . 4
|
| 6 | vex 2776 |
. . . . . . 7
| |
| 7 | 6 | ideq 4838 |
. . . . . 6
|
| 8 | 3, 7 | anbi12i 460 |
. . . . 5
|
| 9 | eqeq1 2213 |
. . . . . . 7
| |
| 10 | eqcom 2208 |
. . . . . . 7
| |
| 11 | 9, 10 | bitrdi 196 |
. . . . . 6
|
| 12 | 11 | pm5.32i 454 |
. . . . 5
|
| 13 | 8, 12 | bitri 184 |
. . . 4
|
| 14 | df-br 4052 |
. . . . 5
| |
| 15 | 14 | anbi2i 457 |
. . . 4
|
| 16 | 5, 13, 15 | 3bitr2ri 209 |
. . 3
|
| 17 | 6 | opelres 4973 |
. . . 4
|
| 18 | 17 | biancomi 270 |
. . 3
|
| 19 | opelxp 4713 |
. . 3
| |
| 20 | 16, 18, 19 | 3bitr4i 212 |
. 2
|
| 21 | 1, 2, 20 | eqrelriiv 4777 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-res 4695 |
| This theorem is referenced by: grp1inv 13514 |
| Copyright terms: Public domain | W3C validator |