| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subadd | Unicode version | ||
| Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8264 |
. . . 4
| |
| 2 | 1 | eqeq1d 2214 |
. . 3
|
| 3 | 2 | 3adant3 1020 |
. 2
|
| 4 | negeu 8263 |
. . . . 5
| |
| 5 | oveq2 5952 |
. . . . . . 7
| |
| 6 | 5 | eqeq1d 2214 |
. . . . . 6
|
| 7 | 6 | riota2 5922 |
. . . . 5
|
| 8 | 4, 7 | sylan2 286 |
. . . 4
|
| 9 | 8 | 3impb 1202 |
. . 3
|
| 10 | 9 | 3com13 1211 |
. 2
|
| 11 | 3, 10 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 |
| This theorem is referenced by: subadd2 8276 subsub23 8277 pncan 8278 pncan3 8280 addsubeq4 8287 subsub2 8300 renegcl 8333 subaddi 8359 subaddd 8401 fzen 10165 nn0ennn 10578 cos2t 12061 cos2tsin 12062 odd2np1 12184 divalgb 12236 sincosq1eq 15311 coskpi 15320 |
| Copyright terms: Public domain | W3C validator |