ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subadd Unicode version

Theorem subadd 8274
Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
subadd  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  C  <->  ( B  +  C )  =  A ) )

Proof of Theorem subadd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subval 8263 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
21eqeq1d 2213 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  C  <-> 
( iota_ x  e.  CC  ( B  +  x
)  =  A )  =  C ) )
323adant3 1019 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  C  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
4 negeu 8262 . . . . 5  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  E! x  e.  CC  ( B  +  x
)  =  A )
5 oveq2 5951 . . . . . . 7  |-  ( x  =  C  ->  ( B  +  x )  =  ( B  +  C ) )
65eqeq1d 2213 . . . . . 6  |-  ( x  =  C  ->  (
( B  +  x
)  =  A  <->  ( B  +  C )  =  A ) )
76riota2 5921 . . . . 5  |-  ( ( C  e.  CC  /\  E! x  e.  CC  ( B  +  x
)  =  A )  ->  ( ( B  +  C )  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
84, 7sylan2 286 . . . 4  |-  ( ( C  e.  CC  /\  ( B  e.  CC  /\  A  e.  CC ) )  ->  ( ( B  +  C )  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
983impb 1201 . . 3  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  A  e.  CC )  ->  (
( B  +  C
)  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
1093com13 1210 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  +  C
)  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
113, 10bitr4d 191 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  C  <->  ( B  +  C )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   E!wreu 2485   iota_crio 5897  (class class class)co 5943   CCcc 7922    + caddc 7927    - cmin 8242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584  ax-resscn 8016  ax-1cn 8017  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sub 8244
This theorem is referenced by:  subadd2  8275  subsub23  8276  pncan  8277  pncan3  8279  addsubeq4  8286  subsub2  8299  renegcl  8332  subaddi  8358  subaddd  8400  fzen  10164  nn0ennn  10576  cos2t  12032  cos2tsin  12033  odd2np1  12155  divalgb  12207  sincosq1eq  15282  coskpi  15291
  Copyright terms: Public domain W3C validator