| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subadd | Unicode version | ||
| Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8334 |
. . . 4
| |
| 2 | 1 | eqeq1d 2238 |
. . 3
|
| 3 | 2 | 3adant3 1041 |
. 2
|
| 4 | negeu 8333 |
. . . . 5
| |
| 5 | oveq2 6008 |
. . . . . . 7
| |
| 6 | 5 | eqeq1d 2238 |
. . . . . 6
|
| 7 | 6 | riota2 5977 |
. . . . 5
|
| 8 | 4, 7 | sylan2 286 |
. . . 4
|
| 9 | 8 | 3impb 1223 |
. . 3
|
| 10 | 9 | 3com13 1232 |
. 2
|
| 11 | 3, 10 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 |
| This theorem is referenced by: subadd2 8346 subsub23 8347 pncan 8348 pncan3 8350 addsubeq4 8357 subsub2 8370 renegcl 8403 subaddi 8429 subaddd 8471 fzen 10235 nn0ennn 10650 cos2t 12256 cos2tsin 12257 odd2np1 12379 divalgb 12431 sincosq1eq 15507 coskpi 15516 |
| Copyright terms: Public domain | W3C validator |