ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subadd Unicode version

Theorem subadd 8222
Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
subadd  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  C  <->  ( B  +  C )  =  A ) )

Proof of Theorem subadd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subval 8211 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
21eqeq1d 2202 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  C  <-> 
( iota_ x  e.  CC  ( B  +  x
)  =  A )  =  C ) )
323adant3 1019 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  C  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
4 negeu 8210 . . . . 5  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  E! x  e.  CC  ( B  +  x
)  =  A )
5 oveq2 5926 . . . . . . 7  |-  ( x  =  C  ->  ( B  +  x )  =  ( B  +  C ) )
65eqeq1d 2202 . . . . . 6  |-  ( x  =  C  ->  (
( B  +  x
)  =  A  <->  ( B  +  C )  =  A ) )
76riota2 5896 . . . . 5  |-  ( ( C  e.  CC  /\  E! x  e.  CC  ( B  +  x
)  =  A )  ->  ( ( B  +  C )  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
84, 7sylan2 286 . . . 4  |-  ( ( C  e.  CC  /\  ( B  e.  CC  /\  A  e.  CC ) )  ->  ( ( B  +  C )  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
983impb 1201 . . 3  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  A  e.  CC )  ->  (
( B  +  C
)  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
1093com13 1210 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  +  C
)  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
113, 10bitr4d 191 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  C  <->  ( B  +  C )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   E!wreu 2474   iota_crio 5872  (class class class)co 5918   CCcc 7870    + caddc 7875    - cmin 8190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192
This theorem is referenced by:  subadd2  8223  subsub23  8224  pncan  8225  pncan3  8227  addsubeq4  8234  subsub2  8247  renegcl  8280  subaddi  8306  subaddd  8348  fzen  10109  nn0ennn  10504  cos2t  11893  cos2tsin  11894  odd2np1  12014  divalgb  12066  sincosq1eq  14974  coskpi  14983
  Copyright terms: Public domain W3C validator