Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elmapg | Unicode version |
Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
elmapg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapvalg 6624 | . . 3 | |
2 | 1 | eleq2d 2236 | . 2 |
3 | fex2 5356 | . . . . 5 | |
4 | 3 | 3com13 1198 | . . . 4 |
5 | 4 | 3expia 1195 | . . 3 |
6 | feq1 5320 | . . . 4 | |
7 | 6 | elab3g 2877 | . . 3 |
8 | 5, 7 | syl 14 | . 2 |
9 | 2, 8 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 cab 2151 cvv 2726 wf 5184 (class class class)co 5842 cmap 6614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 |
This theorem is referenced by: elmapd 6628 mapdm0 6629 elmapi 6636 elmap 6643 map0e 6652 map0g 6654 fdiagfn 6658 ixpssmap2g 6693 map1 6778 mapxpen 6814 infnninf 7088 isomnimap 7101 enomnilem 7102 ismkvmap 7118 enmkvlem 7125 iswomnimap 7130 enwomnilem 7133 hashfacen 10749 omctfn 12376 iscn 12837 iscnp 12839 cndis 12881 ispsmet 12963 ismet 12984 isxmet 12985 elcncf 13200 nnsf 13885 |
Copyright terms: Public domain | W3C validator |