| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmapg | Unicode version | ||
| Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| elmapg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapvalg 6726 |
. . 3
| |
| 2 | 1 | eleq2d 2266 |
. 2
|
| 3 | fex2 5429 |
. . . . 5
| |
| 4 | 3 | 3com13 1210 |
. . . 4
|
| 5 | 4 | 3expia 1207 |
. . 3
|
| 6 | feq1 5393 |
. . . 4
| |
| 7 | 6 | elab3g 2915 |
. . 3
|
| 8 | 5, 7 | syl 14 |
. 2
|
| 9 | 2, 8 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-map 6718 |
| This theorem is referenced by: elmapd 6730 mapdm0 6731 elmapi 6738 elmap 6745 map0e 6754 map0g 6756 fdiagfn 6760 ixpssmap2g 6795 map1 6880 mapxpen 6918 infnninf 7199 isomnimap 7212 enomnilem 7213 ismkvmap 7229 enmkvlem 7236 iswomnimap 7241 enwomnilem 7244 hashfacen 10945 wrdnval 10982 omctfn 12685 pwselbasb 12995 psrbag 14299 iscn 14517 iscnp 14519 cndis 14561 ispsmet 14643 ismet 14664 isxmet 14665 elcncf 14893 elply2 15055 plyf 15057 elplyr 15060 plyaddlem 15069 plymullem 15070 plyco 15079 nnsf 15736 |
| Copyright terms: Public domain | W3C validator |