| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmapg | Unicode version | ||
| Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| elmapg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapvalg 6744 |
. . 3
| |
| 2 | 1 | eleq2d 2274 |
. 2
|
| 3 | fex2 5443 |
. . . . 5
| |
| 4 | 3 | 3com13 1210 |
. . . 4
|
| 5 | 4 | 3expia 1207 |
. . 3
|
| 6 | feq1 5407 |
. . . 4
| |
| 7 | 6 | elab3g 2923 |
. . 3
|
| 8 | 5, 7 | syl 14 |
. 2
|
| 9 | 2, 8 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-map 6736 |
| This theorem is referenced by: elmapd 6748 mapdm0 6749 elmapi 6756 elmap 6763 map0e 6772 map0g 6774 fdiagfn 6778 ixpssmap2g 6813 map1 6903 mapxpen 6944 infnninf 7225 isomnimap 7238 enomnilem 7239 ismkvmap 7255 enmkvlem 7262 iswomnimap 7267 enwomnilem 7270 hashfacen 10979 wrdnval 11022 omctfn 12785 pwselbasb 13096 psrbag 14402 iscn 14640 iscnp 14642 cndis 14684 ispsmet 14766 ismet 14787 isxmet 14788 elcncf 15016 elply2 15178 plyf 15180 elplyr 15183 plyaddlem 15192 plymullem 15193 plyco 15202 nnsf 15904 |
| Copyright terms: Public domain | W3C validator |