ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapg Unicode version

Theorem elmapg 6416
Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
elmapg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )

Proof of Theorem elmapg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 mapvalg 6413 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ^m  B
)  =  { g  |  g : B --> A } )
21eleq2d 2157 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <-> 
C  e.  { g  |  g : B --> A } ) )
3 fex2 5179 . . . . 5  |-  ( ( C : B --> A  /\  B  e.  W  /\  A  e.  V )  ->  C  e.  _V )
433com13 1148 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C : B --> A )  ->  C  e.  _V )
543expia 1145 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C : B --> A  ->  C  e.  _V ) )
6 feq1 5145 . . . 4  |-  ( g  =  C  ->  (
g : B --> A  <->  C : B
--> A ) )
76elab3g 2766 . . 3  |-  ( ( C : B --> A  ->  C  e.  _V )  ->  ( C  e.  {
g  |  g : B --> A }  <->  C : B
--> A ) )
85, 7syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  {
g  |  g : B --> A }  <->  C : B
--> A ) )
92, 8bitrd 186 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1438   {cab 2074   _Vcvv 2619   -->wf 5011  (class class class)co 5652    ^m cmap 6403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-map 6405
This theorem is referenced by:  elmapd  6417  mapdm0  6418  elmapi  6425  elmap  6432  map0e  6441  map0g  6443  fdiagfn  6447  map1  6527  mapxpen  6562  isomnimap  6791  enomnilem  6792  hashfacen  10237  elcncf  11584  nnsf  11850
  Copyright terms: Public domain W3C validator