ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapg Unicode version

Theorem elmapg 6660
Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
elmapg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )

Proof of Theorem elmapg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 mapvalg 6657 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ^m  B
)  =  { g  |  g : B --> A } )
21eleq2d 2247 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <-> 
C  e.  { g  |  g : B --> A } ) )
3 fex2 5384 . . . . 5  |-  ( ( C : B --> A  /\  B  e.  W  /\  A  e.  V )  ->  C  e.  _V )
433com13 1208 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C : B --> A )  ->  C  e.  _V )
543expia 1205 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C : B --> A  ->  C  e.  _V ) )
6 feq1 5348 . . . 4  |-  ( g  =  C  ->  (
g : B --> A  <->  C : B
--> A ) )
76elab3g 2888 . . 3  |-  ( ( C : B --> A  ->  C  e.  _V )  ->  ( C  e.  {
g  |  g : B --> A }  <->  C : B
--> A ) )
85, 7syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  {
g  |  g : B --> A }  <->  C : B
--> A ) )
92, 8bitrd 188 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   {cab 2163   _Vcvv 2737   -->wf 5212  (class class class)co 5874    ^m cmap 6647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-map 6649
This theorem is referenced by:  elmapd  6661  mapdm0  6662  elmapi  6669  elmap  6676  map0e  6685  map0g  6687  fdiagfn  6691  ixpssmap2g  6726  map1  6811  mapxpen  6847  infnninf  7121  isomnimap  7134  enomnilem  7135  ismkvmap  7151  enmkvlem  7158  iswomnimap  7163  enwomnilem  7166  hashfacen  10815  omctfn  12443  iscn  13667  iscnp  13669  cndis  13711  ispsmet  13793  ismet  13814  isxmet  13815  elcncf  14030  nnsf  14724
  Copyright terms: Public domain W3C validator