| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmapg | Unicode version | ||
| Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| elmapg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapvalg 6803 |
. . 3
| |
| 2 | 1 | eleq2d 2299 |
. 2
|
| 3 | fex2 5491 |
. . . . 5
| |
| 4 | 3 | 3com13 1232 |
. . . 4
|
| 5 | 4 | 3expia 1229 |
. . 3
|
| 6 | feq1 5455 |
. . . 4
| |
| 7 | 6 | elab3g 2954 |
. . 3
|
| 8 | 5, 7 | syl 14 |
. 2
|
| 9 | 2, 8 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-map 6795 |
| This theorem is referenced by: elmapd 6807 mapdm0 6808 elmapi 6815 elmap 6822 map0e 6831 map0g 6833 fdiagfn 6837 ixpssmap2g 6872 map1 6963 mapxpen 7005 infnninf 7287 isomnimap 7300 enomnilem 7301 ismkvmap 7317 enmkvlem 7324 iswomnimap 7329 enwomnilem 7332 hashfacen 11053 wrdnval 11097 omctfn 13009 pwselbasb 13321 psrbag 14627 iscn 14865 iscnp 14867 cndis 14909 ispsmet 14991 ismet 15012 isxmet 15013 elcncf 15241 elply2 15403 plyf 15405 elplyr 15408 plyaddlem 15417 plymullem 15418 plyco 15427 nnsf 16330 |
| Copyright terms: Public domain | W3C validator |