ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapg Unicode version

Theorem elmapg 6748
Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
elmapg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )

Proof of Theorem elmapg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 mapvalg 6745 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ^m  B
)  =  { g  |  g : B --> A } )
21eleq2d 2275 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <-> 
C  e.  { g  |  g : B --> A } ) )
3 fex2 5444 . . . . 5  |-  ( ( C : B --> A  /\  B  e.  W  /\  A  e.  V )  ->  C  e.  _V )
433com13 1211 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C : B --> A )  ->  C  e.  _V )
543expia 1208 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C : B --> A  ->  C  e.  _V ) )
6 feq1 5408 . . . 4  |-  ( g  =  C  ->  (
g : B --> A  <->  C : B
--> A ) )
76elab3g 2924 . . 3  |-  ( ( C : B --> A  ->  C  e.  _V )  ->  ( C  e.  {
g  |  g : B --> A }  <->  C : B
--> A ) )
85, 7syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  {
g  |  g : B --> A }  <->  C : B
--> A ) )
92, 8bitrd 188 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   {cab 2191   _Vcvv 2772   -->wf 5267  (class class class)co 5944    ^m cmap 6735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-map 6737
This theorem is referenced by:  elmapd  6749  mapdm0  6750  elmapi  6757  elmap  6764  map0e  6773  map0g  6775  fdiagfn  6779  ixpssmap2g  6814  map1  6904  mapxpen  6945  infnninf  7226  isomnimap  7239  enomnilem  7240  ismkvmap  7256  enmkvlem  7263  iswomnimap  7268  enwomnilem  7271  hashfacen  10981  wrdnval  11024  omctfn  12814  pwselbasb  13125  psrbag  14431  iscn  14669  iscnp  14671  cndis  14713  ispsmet  14795  ismet  14816  isxmet  14817  elcncf  15045  elply2  15207  plyf  15209  elplyr  15212  plyaddlem  15221  plymullem  15222  plyco  15231  nnsf  15942
  Copyright terms: Public domain W3C validator