| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 |
. . . 4
| |
| 2 | 1 | 3com13 1211 |
. . 3
|
| 3 | 2 | 3adant1r 1234 |
. 2
|
| 4 | 3 | 3com13 1211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: addassnqg 7530 mulassnqg 7532 prarloc 7651 ltpopr 7743 ltexprlemfl 7757 ltexprlemfu 7759 addasssrg 7904 axaddass 8020 apmul1 8896 ltmul2 8964 lemul2 8965 dvdscmulr 12246 dvdsmulcr 12247 modremain 12355 ndvdsadd 12357 rpexp12i 12592 xblcntrps 15000 xblcntr 15001 |
| Copyright terms: Public domain | W3C validator |