Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3adant3r | Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3adant1l.1 |
Ref | Expression |
---|---|
3adant3r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adant1l.1 | . . . 4 | |
2 | 1 | 3com13 1203 | . . 3 |
3 | 2 | 3adant1r 1226 | . 2 |
4 | 3 | 3com13 1203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: addassnqg 7344 mulassnqg 7346 prarloc 7465 ltpopr 7557 ltexprlemfl 7571 ltexprlemfu 7573 addasssrg 7718 axaddass 7834 apmul1 8705 ltmul2 8772 lemul2 8773 dvdscmulr 11782 dvdsmulcr 11783 modremain 11888 ndvdsadd 11890 rpexp12i 12109 xblcntrps 13207 xblcntr 13208 |
Copyright terms: Public domain | W3C validator |