ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r Unicode version

Theorem 3adant3r 1238
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r  |-  ( (
ph  /\  ps  /\  ( ch  /\  ta ) )  ->  th )

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213com13 1211 . . 3  |-  ( ( ch  /\  ps  /\  ph )  ->  th )
323adant1r 1234 . 2  |-  ( ( ( ch  /\  ta )  /\  ps  /\  ph )  ->  th )
433com13 1211 1  |-  ( (
ph  /\  ps  /\  ( ch  /\  ta ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  addassnqg  7495  mulassnqg  7497  prarloc  7616  ltpopr  7708  ltexprlemfl  7722  ltexprlemfu  7724  addasssrg  7869  axaddass  7985  apmul1  8861  ltmul2  8929  lemul2  8930  dvdscmulr  12131  dvdsmulcr  12132  modremain  12240  ndvdsadd  12242  rpexp12i  12477  xblcntrps  14885  xblcntr  14886
  Copyright terms: Public domain W3C validator