ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r Unicode version

Theorem 3adant3r 1259
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r  |-  ( (
ph  /\  ps  /\  ( ch  /\  ta ) )  ->  th )

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213com13 1232 . . 3  |-  ( ( ch  /\  ps  /\  ph )  ->  th )
323adant1r 1255 . 2  |-  ( ( ( ch  /\  ta )  /\  ps  /\  ph )  ->  th )
433com13 1232 1  |-  ( (
ph  /\  ps  /\  ( ch  /\  ta ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  addassnqg  7569  mulassnqg  7571  prarloc  7690  ltpopr  7782  ltexprlemfl  7796  ltexprlemfu  7798  addasssrg  7943  axaddass  8059  apmul1  8935  ltmul2  9003  lemul2  9004  dvdscmulr  12331  dvdsmulcr  12332  modremain  12440  ndvdsadd  12442  rpexp12i  12677  xblcntrps  15087  xblcntr  15088
  Copyright terms: Public domain W3C validator