| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 |
. . . 4
| |
| 2 | 1 | 3com13 1232 |
. . 3
|
| 3 | 2 | 3adant1r 1255 |
. 2
|
| 4 | 3 | 3com13 1232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: addassnqg 7569 mulassnqg 7571 prarloc 7690 ltpopr 7782 ltexprlemfl 7796 ltexprlemfu 7798 addasssrg 7943 axaddass 8059 apmul1 8935 ltmul2 9003 lemul2 9004 dvdscmulr 12331 dvdsmulcr 12332 modremain 12440 ndvdsadd 12442 rpexp12i 12677 xblcntrps 15087 xblcntr 15088 |
| Copyright terms: Public domain | W3C validator |