| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 |
. . . 4
| |
| 2 | 1 | 3com13 1211 |
. . 3
|
| 3 | 2 | 3adant1r 1234 |
. 2
|
| 4 | 3 | 3com13 1211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: addassnqg 7495 mulassnqg 7497 prarloc 7616 ltpopr 7708 ltexprlemfl 7722 ltexprlemfu 7724 addasssrg 7869 axaddass 7985 apmul1 8861 ltmul2 8929 lemul2 8930 dvdscmulr 12131 dvdsmulcr 12132 modremain 12240 ndvdsadd 12242 rpexp12i 12477 xblcntrps 14885 xblcntr 14886 |
| Copyright terms: Public domain | W3C validator |