| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 |
. . . 4
| |
| 2 | 1 | 3com13 1211 |
. . 3
|
| 3 | 2 | 3adant1r 1234 |
. 2
|
| 4 | 3 | 3com13 1211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: addassnqg 7497 mulassnqg 7499 prarloc 7618 ltpopr 7710 ltexprlemfl 7724 ltexprlemfu 7726 addasssrg 7871 axaddass 7987 apmul1 8863 ltmul2 8931 lemul2 8932 dvdscmulr 12164 dvdsmulcr 12165 modremain 12273 ndvdsadd 12275 rpexp12i 12510 xblcntrps 14918 xblcntr 14919 |
| Copyright terms: Public domain | W3C validator |