ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r Unicode version

Theorem 3adant3r 1238
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r  |-  ( (
ph  /\  ps  /\  ( ch  /\  ta ) )  ->  th )

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213com13 1211 . . 3  |-  ( ( ch  /\  ps  /\  ph )  ->  th )
323adant1r 1234 . 2  |-  ( ( ( ch  /\  ta )  /\  ps  /\  ph )  ->  th )
433com13 1211 1  |-  ( (
ph  /\  ps  /\  ( ch  /\  ta ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  addassnqg  7530  mulassnqg  7532  prarloc  7651  ltpopr  7743  ltexprlemfl  7757  ltexprlemfu  7759  addasssrg  7904  axaddass  8020  apmul1  8896  ltmul2  8964  lemul2  8965  dvdscmulr  12246  dvdsmulcr  12247  modremain  12355  ndvdsadd  12357  rpexp12i  12592  xblcntrps  15000  xblcntr  15001
  Copyright terms: Public domain W3C validator