Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3adant3r | Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3adant1l.1 |
Ref | Expression |
---|---|
3adant3r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adant1l.1 | . . . 4 | |
2 | 1 | 3com13 1208 | . . 3 |
3 | 2 | 3adant1r 1231 | . 2 |
4 | 3 | 3com13 1208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: addassnqg 7356 mulassnqg 7358 prarloc 7477 ltpopr 7569 ltexprlemfl 7583 ltexprlemfu 7585 addasssrg 7730 axaddass 7846 apmul1 8717 ltmul2 8784 lemul2 8785 dvdscmulr 11793 dvdsmulcr 11794 modremain 11899 ndvdsadd 11901 rpexp12i 12120 xblcntrps 13464 xblcntr 13465 |
Copyright terms: Public domain | W3C validator |