ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r Unicode version

Theorem 3adant3r 1235
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r  |-  ( (
ph  /\  ps  /\  ( ch  /\  ta ) )  ->  th )

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213com13 1208 . . 3  |-  ( ( ch  /\  ps  /\  ph )  ->  th )
323adant1r 1231 . 2  |-  ( ( ( ch  /\  ta )  /\  ps  /\  ph )  ->  th )
433com13 1208 1  |-  ( (
ph  /\  ps  /\  ( ch  /\  ta ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  addassnqg  7356  mulassnqg  7358  prarloc  7477  ltpopr  7569  ltexprlemfl  7583  ltexprlemfu  7585  addasssrg  7730  axaddass  7846  apmul1  8717  ltmul2  8784  lemul2  8785  dvdscmulr  11793  dvdsmulcr  11794  modremain  11899  ndvdsadd  11901  rpexp12i  12120  xblcntrps  13464  xblcntr  13465
  Copyright terms: Public domain W3C validator