| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3adant3r | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| 3adant1l.1 | 
 | 
| Ref | Expression | 
|---|---|
| 3adant3r | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3adant1l.1 | 
. . . 4
 | |
| 2 | 1 | 3com13 1210 | 
. . 3
 | 
| 3 | 2 | 3adant1r 1233 | 
. 2
 | 
| 4 | 3 | 3com13 1210 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: addassnqg 7449 mulassnqg 7451 prarloc 7570 ltpopr 7662 ltexprlemfl 7676 ltexprlemfu 7678 addasssrg 7823 axaddass 7939 apmul1 8815 ltmul2 8883 lemul2 8884 dvdscmulr 11985 dvdsmulcr 11986 modremain 12094 ndvdsadd 12096 rpexp12i 12323 xblcntrps 14649 xblcntr 14650 | 
| Copyright terms: Public domain | W3C validator |