ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooshf Unicode version

Theorem iooshf 9431
Description: Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
iooshf  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
A  e.  ( ( C  +  B ) (,) ( D  +  B ) ) ) )

Proof of Theorem iooshf
StepHypRef Expression
1 ltaddsub 7975 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( C  +  B
)  <  A  <->  C  <  ( A  -  B ) ) )
213com13 1149 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  B
)  <  A  <->  C  <  ( A  -  B ) ) )
323expa 1144 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( C  +  B )  < 
A  <->  C  <  ( A  -  B ) ) )
43adantrr 464 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( C  +  B )  <  A  <->  C  <  ( A  -  B ) ) )
5 ltsubadd 7971 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  D  e.  RR )  ->  (
( A  -  B
)  <  D  <->  A  <  ( D  +  B ) ) )
65bicomd 140 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  D  e.  RR )  ->  ( A  <  ( D  +  B )  <->  ( A  -  B )  <  D
) )
763expa 1144 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  RR )  ->  ( A  < 
( D  +  B
)  <->  ( A  -  B )  <  D
) )
87adantrl 463 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <  ( D  +  B )  <->  ( A  -  B )  <  D ) )
94, 8anbi12d 458 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( C  +  B )  < 
A  /\  A  <  ( D  +  B ) )  <->  ( C  < 
( A  -  B
)  /\  ( A  -  B )  <  D
) ) )
10 readdcl 7529 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
1110rexrd 7598 . . . . 5  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR* )
1211ad2ant2rl 496 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( C  +  B
)  e.  RR* )
13 readdcl 7529 . . . . . 6  |-  ( ( D  e.  RR  /\  B  e.  RR )  ->  ( D  +  B
)  e.  RR )
1413rexrd 7598 . . . . 5  |-  ( ( D  e.  RR  /\  B  e.  RR )  ->  ( D  +  B
)  e.  RR* )
1514ad2ant2l 493 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( D  +  B
)  e.  RR* )
16 rexr 7594 . . . . 5  |-  ( A  e.  RR  ->  A  e.  RR* )
1716ad2antrl 475 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  A  e.  RR* )
18 elioo5 9412 . . . 4  |-  ( ( ( C  +  B
)  e.  RR*  /\  ( D  +  B )  e.  RR*  /\  A  e. 
RR* )  ->  ( A  e.  ( ( C  +  B ) (,) ( D  +  B
) )  <->  ( ( C  +  B )  <  A  /\  A  < 
( D  +  B
) ) ) )
1912, 15, 17, 18syl3anc 1175 . . 3  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( A  e.  ( ( C  +  B
) (,) ( D  +  B ) )  <-> 
( ( C  +  B )  <  A  /\  A  <  ( D  +  B ) ) ) )
2019ancoms 265 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  e.  ( ( C  +  B
) (,) ( D  +  B ) )  <-> 
( ( C  +  B )  <  A  /\  A  <  ( D  +  B ) ) ) )
21 rexr 7594 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
2221ad2antrl 475 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR* )
23 rexr 7594 . . . 4  |-  ( D  e.  RR  ->  D  e.  RR* )
2423ad2antll 476 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR* )
25 resubcl 7807 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
2625rexrd 7598 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR* )
2726adantr 271 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  -  B
)  e.  RR* )
28 elioo5 9412 . . 3  |-  ( ( C  e.  RR*  /\  D  e.  RR*  /\  ( A  -  B )  e. 
RR* )  ->  (
( A  -  B
)  e.  ( C (,) D )  <->  ( C  <  ( A  -  B
)  /\  ( A  -  B )  <  D
) ) )
2922, 24, 27, 28syl3anc 1175 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
( C  <  ( A  -  B )  /\  ( A  -  B
)  <  D )
) )
309, 20, 293bitr4rd 220 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
A  e.  ( ( C  +  B ) (,) ( D  +  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 925    e. wcel 1439   class class class wbr 3851  (class class class)co 5666   RRcr 7410    + caddc 7414   RR*cxr 7582    < clt 7583    - cmin 7714   (,)cioo 9367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-sub 7716  df-neg 7717  df-ioo 9371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator