Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iooshf | Unicode version |
Description: Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.) |
Ref | Expression |
---|---|
iooshf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltaddsub 8334 | . . . . . 6 | |
2 | 1 | 3com13 1198 | . . . . 5 |
3 | 2 | 3expa 1193 | . . . 4 |
4 | 3 | adantrr 471 | . . 3 |
5 | ltsubadd 8330 | . . . . . 6 | |
6 | 5 | bicomd 140 | . . . . 5 |
7 | 6 | 3expa 1193 | . . . 4 |
8 | 7 | adantrl 470 | . . 3 |
9 | 4, 8 | anbi12d 465 | . 2 |
10 | readdcl 7879 | . . . . . 6 | |
11 | 10 | rexrd 7948 | . . . . 5 |
12 | 11 | ad2ant2rl 503 | . . . 4 |
13 | readdcl 7879 | . . . . . 6 | |
14 | 13 | rexrd 7948 | . . . . 5 |
15 | 14 | ad2ant2l 500 | . . . 4 |
16 | rexr 7944 | . . . . 5 | |
17 | 16 | ad2antrl 482 | . . . 4 |
18 | elioo5 9869 | . . . 4 | |
19 | 12, 15, 17, 18 | syl3anc 1228 | . . 3 |
20 | 19 | ancoms 266 | . 2 |
21 | rexr 7944 | . . . 4 | |
22 | 21 | ad2antrl 482 | . . 3 |
23 | rexr 7944 | . . . 4 | |
24 | 23 | ad2antll 483 | . . 3 |
25 | resubcl 8162 | . . . . 5 | |
26 | 25 | rexrd 7948 | . . . 4 |
27 | 26 | adantr 274 | . . 3 |
28 | elioo5 9869 | . . 3 | |
29 | 22, 24, 27, 28 | syl3anc 1228 | . 2 |
30 | 9, 20, 29 | 3bitr4rd 220 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 caddc 7756 cxr 7932 clt 7933 cmin 8069 cioo 9824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-sub 8071 df-neg 8072 df-ioo 9828 |
This theorem is referenced by: sinq34lt0t 13392 |
Copyright terms: Public domain | W3C validator |