ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooshf Unicode version

Theorem iooshf 9939
Description: Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
iooshf  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
A  e.  ( ( C  +  B ) (,) ( D  +  B ) ) ) )

Proof of Theorem iooshf
StepHypRef Expression
1 ltaddsub 8383 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( C  +  B
)  <  A  <->  C  <  ( A  -  B ) ) )
213com13 1208 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  B
)  <  A  <->  C  <  ( A  -  B ) ) )
323expa 1203 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( C  +  B )  < 
A  <->  C  <  ( A  -  B ) ) )
43adantrr 479 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( C  +  B )  <  A  <->  C  <  ( A  -  B ) ) )
5 ltsubadd 8379 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  D  e.  RR )  ->  (
( A  -  B
)  <  D  <->  A  <  ( D  +  B ) ) )
65bicomd 141 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  D  e.  RR )  ->  ( A  <  ( D  +  B )  <->  ( A  -  B )  <  D
) )
763expa 1203 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  RR )  ->  ( A  < 
( D  +  B
)  <->  ( A  -  B )  <  D
) )
87adantrl 478 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <  ( D  +  B )  <->  ( A  -  B )  <  D ) )
94, 8anbi12d 473 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( C  +  B )  < 
A  /\  A  <  ( D  +  B ) )  <->  ( C  < 
( A  -  B
)  /\  ( A  -  B )  <  D
) ) )
10 readdcl 7928 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
1110rexrd 7997 . . . . 5  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR* )
1211ad2ant2rl 511 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( C  +  B
)  e.  RR* )
13 readdcl 7928 . . . . . 6  |-  ( ( D  e.  RR  /\  B  e.  RR )  ->  ( D  +  B
)  e.  RR )
1413rexrd 7997 . . . . 5  |-  ( ( D  e.  RR  /\  B  e.  RR )  ->  ( D  +  B
)  e.  RR* )
1514ad2ant2l 508 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( D  +  B
)  e.  RR* )
16 rexr 7993 . . . . 5  |-  ( A  e.  RR  ->  A  e.  RR* )
1716ad2antrl 490 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  A  e.  RR* )
18 elioo5 9920 . . . 4  |-  ( ( ( C  +  B
)  e.  RR*  /\  ( D  +  B )  e.  RR*  /\  A  e. 
RR* )  ->  ( A  e.  ( ( C  +  B ) (,) ( D  +  B
) )  <->  ( ( C  +  B )  <  A  /\  A  < 
( D  +  B
) ) ) )
1912, 15, 17, 18syl3anc 1238 . . 3  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( A  e.  ( ( C  +  B
) (,) ( D  +  B ) )  <-> 
( ( C  +  B )  <  A  /\  A  <  ( D  +  B ) ) ) )
2019ancoms 268 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  e.  ( ( C  +  B
) (,) ( D  +  B ) )  <-> 
( ( C  +  B )  <  A  /\  A  <  ( D  +  B ) ) ) )
21 rexr 7993 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
2221ad2antrl 490 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR* )
23 rexr 7993 . . . 4  |-  ( D  e.  RR  ->  D  e.  RR* )
2423ad2antll 491 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR* )
25 resubcl 8211 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
2625rexrd 7997 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR* )
2726adantr 276 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  -  B
)  e.  RR* )
28 elioo5 9920 . . 3  |-  ( ( C  e.  RR*  /\  D  e.  RR*  /\  ( A  -  B )  e. 
RR* )  ->  (
( A  -  B
)  e.  ( C (,) D )  <->  ( C  <  ( A  -  B
)  /\  ( A  -  B )  <  D
) ) )
2922, 24, 27, 28syl3anc 1238 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
( C  <  ( A  -  B )  /\  ( A  -  B
)  <  D )
) )
309, 20, 293bitr4rd 221 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
A  e.  ( ( C  +  B ) (,) ( D  +  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4000  (class class class)co 5869   RRcr 7801    + caddc 7805   RR*cxr 7981    < clt 7982    - cmin 8118   (,)cioo 9875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-sub 8120  df-neg 8121  df-ioo 9879
This theorem is referenced by:  sinq34lt0t  13919
  Copyright terms: Public domain W3C validator