ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooshf Unicode version

Theorem iooshf 9888
Description: Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
iooshf  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
A  e.  ( ( C  +  B ) (,) ( D  +  B ) ) ) )

Proof of Theorem iooshf
StepHypRef Expression
1 ltaddsub 8334 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( C  +  B
)  <  A  <->  C  <  ( A  -  B ) ) )
213com13 1198 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  B
)  <  A  <->  C  <  ( A  -  B ) ) )
323expa 1193 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( C  +  B )  < 
A  <->  C  <  ( A  -  B ) ) )
43adantrr 471 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( C  +  B )  <  A  <->  C  <  ( A  -  B ) ) )
5 ltsubadd 8330 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  D  e.  RR )  ->  (
( A  -  B
)  <  D  <->  A  <  ( D  +  B ) ) )
65bicomd 140 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  D  e.  RR )  ->  ( A  <  ( D  +  B )  <->  ( A  -  B )  <  D
) )
763expa 1193 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  RR )  ->  ( A  < 
( D  +  B
)  <->  ( A  -  B )  <  D
) )
87adantrl 470 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <  ( D  +  B )  <->  ( A  -  B )  <  D ) )
94, 8anbi12d 465 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( C  +  B )  < 
A  /\  A  <  ( D  +  B ) )  <->  ( C  < 
( A  -  B
)  /\  ( A  -  B )  <  D
) ) )
10 readdcl 7879 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
1110rexrd 7948 . . . . 5  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR* )
1211ad2ant2rl 503 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( C  +  B
)  e.  RR* )
13 readdcl 7879 . . . . . 6  |-  ( ( D  e.  RR  /\  B  e.  RR )  ->  ( D  +  B
)  e.  RR )
1413rexrd 7948 . . . . 5  |-  ( ( D  e.  RR  /\  B  e.  RR )  ->  ( D  +  B
)  e.  RR* )
1514ad2ant2l 500 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( D  +  B
)  e.  RR* )
16 rexr 7944 . . . . 5  |-  ( A  e.  RR  ->  A  e.  RR* )
1716ad2antrl 482 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  A  e.  RR* )
18 elioo5 9869 . . . 4  |-  ( ( ( C  +  B
)  e.  RR*  /\  ( D  +  B )  e.  RR*  /\  A  e. 
RR* )  ->  ( A  e.  ( ( C  +  B ) (,) ( D  +  B
) )  <->  ( ( C  +  B )  <  A  /\  A  < 
( D  +  B
) ) ) )
1912, 15, 17, 18syl3anc 1228 . . 3  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( A  e.  ( ( C  +  B
) (,) ( D  +  B ) )  <-> 
( ( C  +  B )  <  A  /\  A  <  ( D  +  B ) ) ) )
2019ancoms 266 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  e.  ( ( C  +  B
) (,) ( D  +  B ) )  <-> 
( ( C  +  B )  <  A  /\  A  <  ( D  +  B ) ) ) )
21 rexr 7944 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
2221ad2antrl 482 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR* )
23 rexr 7944 . . . 4  |-  ( D  e.  RR  ->  D  e.  RR* )
2423ad2antll 483 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR* )
25 resubcl 8162 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
2625rexrd 7948 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR* )
2726adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  -  B
)  e.  RR* )
28 elioo5 9869 . . 3  |-  ( ( C  e.  RR*  /\  D  e.  RR*  /\  ( A  -  B )  e. 
RR* )  ->  (
( A  -  B
)  e.  ( C (,) D )  <->  ( C  <  ( A  -  B
)  /\  ( A  -  B )  <  D
) ) )
2922, 24, 27, 28syl3anc 1228 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
( C  <  ( A  -  B )  /\  ( A  -  B
)  <  D )
) )
309, 20, 293bitr4rd 220 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  -  B )  e.  ( C (,) D )  <-> 
A  e.  ( ( C  +  B ) (,) ( D  +  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752    + caddc 7756   RR*cxr 7932    < clt 7933    - cmin 8069   (,)cioo 9824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-sub 8071  df-neg 8072  df-ioo 9828
This theorem is referenced by:  sinq34lt0t  13392
  Copyright terms: Public domain W3C validator