| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3coml | Unicode version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3coml |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3com23 1233 |
. 2
|
| 3 | 2 | 3com13 1232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3comr 1235 nndir 6636 f1oen2g 6906 f1dom2g 6907 ordiso 7203 addassnqg 7569 ltbtwnnqq 7602 nnanq0 7645 ltasrg 7957 recexgt0sr 7960 axmulass 8060 adddir 8137 axltadd 8216 ltleletr 8228 letr 8229 pnpcan2 8386 subdir 8532 div13ap 8840 zdiv 9535 xrletr 10004 fzen 10239 fzrevral2 10302 fzshftral 10304 fzind2 10445 mulbinom2 10878 ccatlcan 11250 elicc4abs 11605 dvdsnegb 12319 muldvds1 12327 muldvds2 12328 dvdscmul 12329 dvdsmulc 12330 dvdsgcd 12533 mulgcdr 12539 lcmgcdeq 12605 congr 12622 mulgnnass 13694 mettri 15047 cnmet 15204 addcncntoplem 15235 |
| Copyright terms: Public domain | W3C validator |