| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3coml | Unicode version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3coml |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3com23 1211 |
. 2
|
| 3 | 2 | 3com13 1210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3comr 1213 nndir 6575 f1oen2g 6845 f1dom2g 6846 ordiso 7137 addassnqg 7494 ltbtwnnqq 7527 nnanq0 7570 ltasrg 7882 recexgt0sr 7885 axmulass 7985 adddir 8062 axltadd 8141 ltleletr 8153 letr 8154 pnpcan2 8311 subdir 8457 div13ap 8765 zdiv 9460 xrletr 9929 fzen 10164 fzrevral2 10227 fzshftral 10229 fzind2 10366 mulbinom2 10799 elicc4abs 11376 dvdsnegb 12090 muldvds1 12098 muldvds2 12099 dvdscmul 12100 dvdsmulc 12101 dvdsgcd 12304 mulgcdr 12310 lcmgcdeq 12376 congr 12393 mulgnnass 13464 mettri 14816 cnmet 14973 addcncntoplem 15004 |
| Copyright terms: Public domain | W3C validator |