Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3coml | Unicode version |
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 |
Ref | Expression |
---|---|
3coml |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 | |
2 | 1 | 3com23 1188 | . 2 |
3 | 2 | 3com13 1187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: 3comr 1190 nndir 6426 f1oen2g 6689 f1dom2g 6690 ordiso 6966 addassnqg 7281 ltbtwnnqq 7314 nnanq0 7357 ltasrg 7669 recexgt0sr 7672 axmulass 7772 adddir 7848 axltadd 7926 ltleletr 7938 letr 7939 pnpcan2 8094 subdir 8240 div13ap 8545 zdiv 9231 xrletr 9690 fzen 9923 fzrevral2 9986 fzshftral 9988 fzind2 10116 mulbinom2 10512 elicc4abs 10971 dvdsnegb 11677 muldvds1 11685 muldvds2 11686 dvdscmul 11687 dvdsmulc 11688 dvdsgcd 11867 mulgcdr 11873 lcmgcdeq 11931 congr 11948 mettri 12712 cnmet 12869 addcncntoplem 12890 |
Copyright terms: Public domain | W3C validator |