Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3coml | Unicode version |
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 |
Ref | Expression |
---|---|
3coml |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 | |
2 | 1 | 3com23 1209 | . 2 |
3 | 2 | 3com13 1208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3comr 1211 nndir 6481 f1oen2g 6745 f1dom2g 6746 ordiso 7025 addassnqg 7356 ltbtwnnqq 7389 nnanq0 7432 ltasrg 7744 recexgt0sr 7747 axmulass 7847 adddir 7923 axltadd 8001 ltleletr 8013 letr 8014 pnpcan2 8171 subdir 8317 div13ap 8622 zdiv 9312 xrletr 9777 fzen 10011 fzrevral2 10074 fzshftral 10076 fzind2 10207 mulbinom2 10604 elicc4abs 11069 dvdsnegb 11781 muldvds1 11789 muldvds2 11790 dvdscmul 11791 dvdsmulc 11792 dvdsgcd 11978 mulgcdr 11984 lcmgcdeq 12048 congr 12065 mulgnnass 12876 mettri 13424 cnmet 13581 addcncntoplem 13602 |
Copyright terms: Public domain | W3C validator |