| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3coml | Unicode version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3coml |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3com23 1212 |
. 2
|
| 3 | 2 | 3com13 1211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3comr 1214 nndir 6576 f1oen2g 6846 f1dom2g 6847 ordiso 7138 addassnqg 7495 ltbtwnnqq 7528 nnanq0 7571 ltasrg 7883 recexgt0sr 7886 axmulass 7986 adddir 8063 axltadd 8142 ltleletr 8154 letr 8155 pnpcan2 8312 subdir 8458 div13ap 8766 zdiv 9461 xrletr 9930 fzen 10165 fzrevral2 10228 fzshftral 10230 fzind2 10368 mulbinom2 10801 elicc4abs 11405 dvdsnegb 12119 muldvds1 12127 muldvds2 12128 dvdscmul 12129 dvdsmulc 12130 dvdsgcd 12333 mulgcdr 12339 lcmgcdeq 12405 congr 12422 mulgnnass 13493 mettri 14845 cnmet 15002 addcncntoplem 15033 |
| Copyright terms: Public domain | W3C validator |