| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3coml | Unicode version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3coml |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3com23 1212 |
. 2
|
| 3 | 2 | 3com13 1211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3comr 1214 nndir 6599 f1oen2g 6869 f1dom2g 6870 ordiso 7164 addassnqg 7530 ltbtwnnqq 7563 nnanq0 7606 ltasrg 7918 recexgt0sr 7921 axmulass 8021 adddir 8098 axltadd 8177 ltleletr 8189 letr 8190 pnpcan2 8347 subdir 8493 div13ap 8801 zdiv 9496 xrletr 9965 fzen 10200 fzrevral2 10263 fzshftral 10265 fzind2 10405 mulbinom2 10838 ccatlcan 11209 elicc4abs 11520 dvdsnegb 12234 muldvds1 12242 muldvds2 12243 dvdscmul 12244 dvdsmulc 12245 dvdsgcd 12448 mulgcdr 12454 lcmgcdeq 12520 congr 12537 mulgnnass 13608 mettri 14960 cnmet 15117 addcncntoplem 15148 |
| Copyright terms: Public domain | W3C validator |