| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3coml | Unicode version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3coml |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3com23 1211 |
. 2
|
| 3 | 2 | 3com13 1210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3comr 1213 nndir 6557 f1oen2g 6823 f1dom2g 6824 ordiso 7111 addassnqg 7466 ltbtwnnqq 7499 nnanq0 7542 ltasrg 7854 recexgt0sr 7857 axmulass 7957 adddir 8034 axltadd 8113 ltleletr 8125 letr 8126 pnpcan2 8283 subdir 8429 div13ap 8737 zdiv 9431 xrletr 9900 fzen 10135 fzrevral2 10198 fzshftral 10200 fzind2 10332 mulbinom2 10765 elicc4abs 11276 dvdsnegb 11990 muldvds1 11998 muldvds2 11999 dvdscmul 12000 dvdsmulc 12001 dvdsgcd 12204 mulgcdr 12210 lcmgcdeq 12276 congr 12293 mulgnnass 13363 mettri 14693 cnmet 14850 addcncntoplem 14881 |
| Copyright terms: Public domain | W3C validator |