ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zapne Unicode version

Theorem zapne 9449
Description: Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zapne  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  N  <->  M  =/=  N ) )

Proof of Theorem zapne
StepHypRef Expression
1 zcn 9379 . . 3  |-  ( M  e.  ZZ  ->  M  e.  CC )
2 zcn 9379 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
3 apne 8698 . . 3  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M #  N  ->  M  =/=  N ) )
41, 2, 3syl2an 289 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  N  ->  M  =/=  N ) )
5 df-ne 2377 . . 3  |-  ( M  =/=  N  <->  -.  M  =  N )
6 ztri3or 9417 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
7 3orrot 987 . . . . . . 7  |-  ( ( M  <  N  \/  M  =  N  \/  N  <  M )  <->  ( M  =  N  \/  N  <  M  \/  M  < 
N ) )
8 3orass 984 . . . . . . 7  |-  ( ( M  =  N  \/  N  <  M  \/  M  <  N )  <->  ( M  =  N  \/  ( N  <  M  \/  M  <  N ) ) )
97, 8bitri 184 . . . . . 6  |-  ( ( M  <  N  \/  M  =  N  \/  N  <  M )  <->  ( M  =  N  \/  ( N  <  M  \/  M  <  N ) ) )
106, 9sylib 122 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  N  \/  ( N  < 
M  \/  M  < 
N ) ) )
1110ord 726 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  =  N  ->  ( N  <  M  \/  M  < 
N ) ) )
12 zre 9378 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  RR )
13 zre 9378 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  RR )
14 reaplt 8663 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M #  N  <->  ( M  <  N  \/  N  < 
M ) ) )
15 orcom 730 . . . . . 6  |-  ( ( M  <  N  \/  N  <  M )  <->  ( N  <  M  \/  M  < 
N ) )
1614, 15bitrdi 196 . . . . 5  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M #  N  <->  ( N  <  M  \/  M  < 
N ) ) )
1712, 13, 16syl2an 289 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  N  <->  ( N  <  M  \/  M  < 
N ) ) )
1811, 17sylibrd 169 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  =  N  ->  M #  N
) )
195, 18biimtrid 152 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =/=  N  ->  M #  N ) )
204, 19impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  N  <->  M  =/=  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4045   CCcc 7925   RRcr 7926    < clt 8109   # cap 8656   ZZcz 9374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-inn 9039  df-n0 9298  df-z 9375
This theorem is referenced by:  zltlen  9453  msqznn  9475  qapne  9762  qreccl  9765  seqf1oglem1  10666  nn0opthd  10869  fihashneq0  10941  nnabscl  11444  eftcl  11998  dvdsval2  12134  dvdscmulr  12164  dvdsmulcr  12165  fsumdvds  12186  divconjdvds  12193  gcdn0gt0  12332  lcmcllem  12422  lcmid  12435  3lcm2e6woprm  12441  6lcm4e12  12442  mulgcddvds  12449  divgcdcoprmex  12457  cncongr1  12458  cncongr2  12459  isprm3  12473  pcpremul  12649  pceu  12651  pcmul  12657  pcdiv  12658  pcqmul  12659  dvdsprmpweqle  12693  qexpz  12708  4sqlem11  12757  relogbval  15456  relogbzcl  15457  nnlogbexp  15464  logbgcd1irraplemexp  15473  lgslem1  15510  lgsdilem2  15546  lgsdi  15547  lgsne0  15548  lgseisen  15584
  Copyright terms: Public domain W3C validator