ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zapne Unicode version

Theorem zapne 9482
Description: Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zapne  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  N  <->  M  =/=  N ) )

Proof of Theorem zapne
StepHypRef Expression
1 zcn 9412 . . 3  |-  ( M  e.  ZZ  ->  M  e.  CC )
2 zcn 9412 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
3 apne 8731 . . 3  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M #  N  ->  M  =/=  N ) )
41, 2, 3syl2an 289 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  N  ->  M  =/=  N ) )
5 df-ne 2379 . . 3  |-  ( M  =/=  N  <->  -.  M  =  N )
6 ztri3or 9450 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
7 3orrot 987 . . . . . . 7  |-  ( ( M  <  N  \/  M  =  N  \/  N  <  M )  <->  ( M  =  N  \/  N  <  M  \/  M  < 
N ) )
8 3orass 984 . . . . . . 7  |-  ( ( M  =  N  \/  N  <  M  \/  M  <  N )  <->  ( M  =  N  \/  ( N  <  M  \/  M  <  N ) ) )
97, 8bitri 184 . . . . . 6  |-  ( ( M  <  N  \/  M  =  N  \/  N  <  M )  <->  ( M  =  N  \/  ( N  <  M  \/  M  <  N ) ) )
106, 9sylib 122 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  N  \/  ( N  < 
M  \/  M  < 
N ) ) )
1110ord 726 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  =  N  ->  ( N  <  M  \/  M  < 
N ) ) )
12 zre 9411 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  RR )
13 zre 9411 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  RR )
14 reaplt 8696 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M #  N  <->  ( M  <  N  \/  N  < 
M ) ) )
15 orcom 730 . . . . . 6  |-  ( ( M  <  N  \/  N  <  M )  <->  ( N  <  M  \/  M  < 
N ) )
1614, 15bitrdi 196 . . . . 5  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M #  N  <->  ( N  <  M  \/  M  < 
N ) ) )
1712, 13, 16syl2an 289 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  N  <->  ( N  <  M  \/  M  < 
N ) ) )
1811, 17sylibrd 169 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  =  N  ->  M #  N
) )
195, 18biimtrid 152 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =/=  N  ->  M #  N ) )
204, 19impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  N  <->  M  =/=  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    = wceq 1373    e. wcel 2178    =/= wne 2378   class class class wbr 4059   CCcc 7958   RRcr 7959    < clt 8142   # cap 8689   ZZcz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-inn 9072  df-n0 9331  df-z 9408
This theorem is referenced by:  zltlen  9486  msqznn  9508  qapne  9795  qreccl  9798  seqf1oglem1  10701  nn0opthd  10904  fihashneq0  10976  nnabscl  11526  eftcl  12080  dvdsval2  12216  dvdscmulr  12246  dvdsmulcr  12247  fsumdvds  12268  divconjdvds  12275  gcdn0gt0  12414  lcmcllem  12504  lcmid  12517  3lcm2e6woprm  12523  6lcm4e12  12524  mulgcddvds  12531  divgcdcoprmex  12539  cncongr1  12540  cncongr2  12541  isprm3  12555  pcpremul  12731  pceu  12733  pcmul  12739  pcdiv  12740  pcqmul  12741  dvdsprmpweqle  12775  qexpz  12790  4sqlem11  12839  relogbval  15538  relogbzcl  15539  nnlogbexp  15546  logbgcd1irraplemexp  15555  lgslem1  15592  lgsdilem2  15628  lgsdi  15629  lgsne0  15630  lgseisen  15666
  Copyright terms: Public domain W3C validator