Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnnz | Unicode version |
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
elnnz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8834 | . . . 4 | |
2 | orc 702 | . . . 4 | |
3 | nngt0 8852 | . . . 4 | |
4 | 1, 2, 3 | jca31 307 | . . 3 |
5 | idd 21 | . . . . . . 7 | |
6 | lt0neg2 8338 | . . . . . . . . . . . 12 | |
7 | renegcl 8130 | . . . . . . . . . . . . 13 | |
8 | 0re 7872 | . . . . . . . . . . . . 13 | |
9 | ltnsym 7957 | . . . . . . . . . . . . 13 | |
10 | 7, 8, 9 | sylancl 410 | . . . . . . . . . . . 12 |
11 | 6, 10 | sylbid 149 | . . . . . . . . . . 11 |
12 | 11 | imp 123 | . . . . . . . . . 10 |
13 | nngt0 8852 | . . . . . . . . . 10 | |
14 | 12, 13 | nsyl 618 | . . . . . . . . 9 |
15 | gt0ne0 8296 | . . . . . . . . . 10 | |
16 | 15 | neneqd 2348 | . . . . . . . . 9 |
17 | ioran 742 | . . . . . . . . 9 | |
18 | 14, 16, 17 | sylanbrc 414 | . . . . . . . 8 |
19 | 18 | pm2.21d 609 | . . . . . . 7 |
20 | 5, 19 | jaod 707 | . . . . . 6 |
21 | 20 | ex 114 | . . . . 5 |
22 | 21 | com23 78 | . . . 4 |
23 | 22 | imp31 254 | . . 3 |
24 | 4, 23 | impbii 125 | . 2 |
25 | elz 9163 | . . . 4 | |
26 | 3orrot 969 | . . . . . 6 | |
27 | 3orass 966 | . . . . . 6 | |
28 | 26, 27 | bitri 183 | . . . . 5 |
29 | 28 | anbi2i 453 | . . . 4 |
30 | 25, 29 | bitri 183 | . . 3 |
31 | 30 | anbi1i 454 | . 2 |
32 | 24, 31 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3o 962 wceq 1335 wcel 2128 class class class wbr 3965 cr 7725 cc0 7726 clt 7906 cneg 8041 cn 8827 cz 9161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-inn 8828 df-z 9162 |
This theorem is referenced by: nnssz 9178 elnnz1 9184 znnsub 9212 nn0ge0div 9245 msqznn 9258 elpq 9550 elfz1b 9985 lbfzo0 10073 fzo1fzo0n0 10075 elfzo0z 10076 fzofzim 10080 elfzodifsumelfzo 10093 exp3val 10414 nnesq 10530 nnabscl 10993 cvgratnnlemabsle 11417 p1modz1 11683 nndivdvds 11685 zdvdsdc 11700 oddge22np1 11764 evennn2n 11766 nno 11789 nnoddm1d2 11793 divalglemex 11805 divalglemeuneg 11806 divalg 11807 ndvdsadd 11814 sqgcd 11904 qredeu 11965 prmind2 11988 sqrt2irrlem 12026 sqrt2irrap 12045 qgt0numnn 12064 |
Copyright terms: Public domain | W3C validator |