| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnz | Unicode version | ||
| Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| elnnz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9045 |
. . . 4
| |
| 2 | orc 714 |
. . . 4
| |
| 3 | nngt0 9063 |
. . . 4
| |
| 4 | 1, 2, 3 | jca31 309 |
. . 3
|
| 5 | idd 21 |
. . . . . . 7
| |
| 6 | lt0neg2 8544 |
. . . . . . . . . . . 12
| |
| 7 | renegcl 8335 |
. . . . . . . . . . . . 13
| |
| 8 | 0re 8074 |
. . . . . . . . . . . . 13
| |
| 9 | ltnsym 8160 |
. . . . . . . . . . . . 13
| |
| 10 | 7, 8, 9 | sylancl 413 |
. . . . . . . . . . . 12
|
| 11 | 6, 10 | sylbid 150 |
. . . . . . . . . . 11
|
| 12 | 11 | imp 124 |
. . . . . . . . . 10
|
| 13 | nngt0 9063 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | nsyl 629 |
. . . . . . . . 9
|
| 15 | gt0ne0 8502 |
. . . . . . . . . 10
| |
| 16 | 15 | neneqd 2397 |
. . . . . . . . 9
|
| 17 | ioran 754 |
. . . . . . . . 9
| |
| 18 | 14, 16, 17 | sylanbrc 417 |
. . . . . . . 8
|
| 19 | 18 | pm2.21d 620 |
. . . . . . 7
|
| 20 | 5, 19 | jaod 719 |
. . . . . 6
|
| 21 | 20 | ex 115 |
. . . . 5
|
| 22 | 21 | com23 78 |
. . . 4
|
| 23 | 22 | imp31 256 |
. . 3
|
| 24 | 4, 23 | impbii 126 |
. 2
|
| 25 | elz 9376 |
. . . 4
| |
| 26 | 3orrot 987 |
. . . . . 6
| |
| 27 | 3orass 984 |
. . . . . 6
| |
| 28 | 26, 27 | bitri 184 |
. . . . 5
|
| 29 | 28 | anbi2i 457 |
. . . 4
|
| 30 | 25, 29 | bitri 184 |
. . 3
|
| 31 | 30 | anbi1i 458 |
. 2
|
| 32 | 24, 31 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-z 9375 |
| This theorem is referenced by: nnssz 9391 elnnz1 9397 znnsub 9426 nn0ge0div 9462 msqznn 9475 elpq 9772 elfz1b 10214 lbfzo0 10307 fzo1fzo0n0 10309 elfzo0z 10310 fzofzim 10314 elfzodifsumelfzo 10332 exp3val 10688 nnesq 10806 swrdlsw 11125 nnabscl 11444 cvgratnnlemabsle 11871 p1modz1 12138 nndivdvds 12140 zdvdsdc 12156 oddge22np1 12225 evennn2n 12227 nno 12250 nnoddm1d2 12254 divalglemex 12266 divalglemeuneg 12267 divalg 12268 ndvdsadd 12275 bitsfzolem 12298 sqgcd 12383 qredeu 12452 prmind2 12475 sqrt2irrlem 12516 sqrt2irrap 12535 qgt0numnn 12554 oddprm 12615 pythagtriplem6 12626 pythagtriplem11 12630 pythagtriplem13 12632 pythagtriplem19 12638 pc2dvds 12686 pcadd 12696 4sqlem11 12757 4sqlem12 12758 mulgval 13491 mulgfng 13493 subgmulg 13557 znidomb 14453 sgmnncl 15493 mersenne 15502 gausslemma2dlem1a 15568 lgseisenlem1 15580 lgsquadlem1 15587 lgsquadlem2 15588 2sqlem8 15633 |
| Copyright terms: Public domain | W3C validator |