| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elnnz | Unicode version | ||
| Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) | 
| Ref | Expression | 
|---|---|
| elnnz | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnre 8997 | 
. . . 4
 | |
| 2 | orc 713 | 
. . . 4
 | |
| 3 | nngt0 9015 | 
. . . 4
 | |
| 4 | 1, 2, 3 | jca31 309 | 
. . 3
 | 
| 5 | idd 21 | 
. . . . . . 7
 | |
| 6 | lt0neg2 8496 | 
. . . . . . . . . . . 12
 | |
| 7 | renegcl 8287 | 
. . . . . . . . . . . . 13
 | |
| 8 | 0re 8026 | 
. . . . . . . . . . . . 13
 | |
| 9 | ltnsym 8112 | 
. . . . . . . . . . . . 13
 | |
| 10 | 7, 8, 9 | sylancl 413 | 
. . . . . . . . . . . 12
 | 
| 11 | 6, 10 | sylbid 150 | 
. . . . . . . . . . 11
 | 
| 12 | 11 | imp 124 | 
. . . . . . . . . 10
 | 
| 13 | nngt0 9015 | 
. . . . . . . . . 10
 | |
| 14 | 12, 13 | nsyl 629 | 
. . . . . . . . 9
 | 
| 15 | gt0ne0 8454 | 
. . . . . . . . . 10
 | |
| 16 | 15 | neneqd 2388 | 
. . . . . . . . 9
 | 
| 17 | ioran 753 | 
. . . . . . . . 9
 | |
| 18 | 14, 16, 17 | sylanbrc 417 | 
. . . . . . . 8
 | 
| 19 | 18 | pm2.21d 620 | 
. . . . . . 7
 | 
| 20 | 5, 19 | jaod 718 | 
. . . . . 6
 | 
| 21 | 20 | ex 115 | 
. . . . 5
 | 
| 22 | 21 | com23 78 | 
. . . 4
 | 
| 23 | 22 | imp31 256 | 
. . 3
 | 
| 24 | 4, 23 | impbii 126 | 
. 2
 | 
| 25 | elz 9328 | 
. . . 4
 | |
| 26 | 3orrot 986 | 
. . . . . 6
 | |
| 27 | 3orass 983 | 
. . . . . 6
 | |
| 28 | 26, 27 | bitri 184 | 
. . . . 5
 | 
| 29 | 28 | anbi2i 457 | 
. . . 4
 | 
| 30 | 25, 29 | bitri 184 | 
. . 3
 | 
| 31 | 30 | anbi1i 458 | 
. 2
 | 
| 32 | 24, 31 | bitr4i 187 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-z 9327 | 
| This theorem is referenced by: nnssz 9343 elnnz1 9349 znnsub 9377 nn0ge0div 9413 msqznn 9426 elpq 9723 elfz1b 10165 lbfzo0 10257 fzo1fzo0n0 10259 elfzo0z 10260 fzofzim 10264 elfzodifsumelfzo 10277 exp3val 10633 nnesq 10751 nnabscl 11265 cvgratnnlemabsle 11692 p1modz1 11959 nndivdvds 11961 zdvdsdc 11977 oddge22np1 12046 evennn2n 12048 nno 12071 nnoddm1d2 12075 divalglemex 12087 divalglemeuneg 12088 divalg 12089 ndvdsadd 12096 bitsfzolem 12118 sqgcd 12196 qredeu 12265 prmind2 12288 sqrt2irrlem 12329 sqrt2irrap 12348 qgt0numnn 12367 oddprm 12428 pythagtriplem6 12439 pythagtriplem11 12443 pythagtriplem13 12445 pythagtriplem19 12451 pc2dvds 12499 pcadd 12509 4sqlem11 12570 4sqlem12 12571 mulgval 13252 mulgfng 13254 subgmulg 13318 znidomb 14214 sgmnncl 15224 mersenne 15233 gausslemma2dlem1a 15299 lgseisenlem1 15311 lgsquadlem1 15318 lgsquadlem2 15319 2sqlem8 15364 | 
| Copyright terms: Public domain | W3C validator |