ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnz Unicode version

Theorem elnnz 9384
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elnnz  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )

Proof of Theorem elnnz
StepHypRef Expression
1 nnre 9045 . . . 4  |-  ( N  e.  NN  ->  N  e.  RR )
2 orc 714 . . . 4  |-  ( N  e.  NN  ->  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )
3 nngt0 9063 . . . 4  |-  ( N  e.  NN  ->  0  <  N )
41, 2, 3jca31 309 . . 3  |-  ( N  e.  NN  ->  (
( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )  /\  0  <  N
) )
5 idd 21 . . . . . . 7  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( N  e.  NN  ->  N  e.  NN ) )
6 lt0neg2 8544 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  (
0  <  N  <->  -u N  <  0 ) )
7 renegcl 8335 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  -u N  e.  RR )
8 0re 8074 . . . . . . . . . . . . 13  |-  0  e.  RR
9 ltnsym 8160 . . . . . . . . . . . . 13  |-  ( (
-u N  e.  RR  /\  0  e.  RR )  ->  ( -u N  <  0  ->  -.  0  <  -u N ) )
107, 8, 9sylancl 413 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  ( -u N  <  0  ->  -.  0  <  -u N
) )
116, 10sylbid 150 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  (
0  <  N  ->  -.  0  <  -u N
) )
1211imp 124 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  0  <  -u N
)
13 nngt0 9063 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  0  <  -u N )
1412, 13nsyl 629 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  -u N  e.  NN )
15 gt0ne0 8502 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  0  <  N )  ->  N  =/=  0 )
1615neneqd 2397 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  N  =  0
)
17 ioran 754 . . . . . . . . 9  |-  ( -.  ( -u N  e.  NN  \/  N  =  0 )  <->  ( -.  -u N  e.  NN  /\  -.  N  =  0
) )
1814, 16, 17sylanbrc 417 . . . . . . . 8  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  ( -u N  e.  NN  \/  N  =  0 ) )
1918pm2.21d 620 . . . . . . 7  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( ( -u N  e.  NN  \/  N  =  0 )  ->  N  e.  NN ) )
205, 19jaod 719 . . . . . 6  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  ->  N  e.  NN ) )
2120ex 115 . . . . 5  |-  ( N  e.  RR  ->  (
0  <  N  ->  ( ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  ->  N  e.  NN )
) )
2221com23 78 . . . 4  |-  ( N  e.  RR  ->  (
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  -> 
( 0  <  N  ->  N  e.  NN ) ) )
2322imp31 256 . . 3  |-  ( ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )  /\  0  <  N
)  ->  N  e.  NN )
244, 23impbii 126 . 2  |-  ( N  e.  NN  <->  ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )  /\  0  <  N ) )
25 elz 9376 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
26 3orrot 987 . . . . . 6  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0
) )
27 3orass 984 . . . . . 6  |-  ( ( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0 )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
2826, 27bitri 184 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
2928anbi2i 457 . . . 4  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
3025, 29bitri 184 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
3130anbi1i 458 . 2  |-  ( ( N  e.  ZZ  /\  0  <  N )  <->  ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )  /\  0  <  N ) )
3224, 31bitr4i 187 1  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    = wceq 1373    e. wcel 2176   class class class wbr 4045   RRcr 7926   0cc0 7927    < clt 8109   -ucneg 8246   NNcn 9038   ZZcz 9374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-z 9375
This theorem is referenced by:  nnssz  9391  elnnz1  9397  znnsub  9426  nn0ge0div  9462  msqznn  9475  elpq  9772  elfz1b  10214  lbfzo0  10307  fzo1fzo0n0  10309  elfzo0z  10310  fzofzim  10314  elfzodifsumelfzo  10332  exp3val  10688  nnesq  10806  swrdlsw  11125  nnabscl  11444  cvgratnnlemabsle  11871  p1modz1  12138  nndivdvds  12140  zdvdsdc  12156  oddge22np1  12225  evennn2n  12227  nno  12250  nnoddm1d2  12254  divalglemex  12266  divalglemeuneg  12267  divalg  12268  ndvdsadd  12275  bitsfzolem  12298  sqgcd  12383  qredeu  12452  prmind2  12475  sqrt2irrlem  12516  sqrt2irrap  12535  qgt0numnn  12554  oddprm  12615  pythagtriplem6  12626  pythagtriplem11  12630  pythagtriplem13  12632  pythagtriplem19  12638  pc2dvds  12686  pcadd  12696  4sqlem11  12757  4sqlem12  12758  mulgval  13491  mulgfng  13493  subgmulg  13557  znidomb  14453  sgmnncl  15493  mersenne  15502  gausslemma2dlem1a  15568  lgseisenlem1  15580  lgsquadlem1  15587  lgsquadlem2  15588  2sqlem8  15633
  Copyright terms: Public domain W3C validator