ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnz Unicode version

Theorem elnnz 9265
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elnnz  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )

Proof of Theorem elnnz
StepHypRef Expression
1 nnre 8928 . . . 4  |-  ( N  e.  NN  ->  N  e.  RR )
2 orc 712 . . . 4  |-  ( N  e.  NN  ->  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )
3 nngt0 8946 . . . 4  |-  ( N  e.  NN  ->  0  <  N )
41, 2, 3jca31 309 . . 3  |-  ( N  e.  NN  ->  (
( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )  /\  0  <  N
) )
5 idd 21 . . . . . . 7  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( N  e.  NN  ->  N  e.  NN ) )
6 lt0neg2 8428 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  (
0  <  N  <->  -u N  <  0 ) )
7 renegcl 8220 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  -u N  e.  RR )
8 0re 7959 . . . . . . . . . . . . 13  |-  0  e.  RR
9 ltnsym 8045 . . . . . . . . . . . . 13  |-  ( (
-u N  e.  RR  /\  0  e.  RR )  ->  ( -u N  <  0  ->  -.  0  <  -u N ) )
107, 8, 9sylancl 413 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  ( -u N  <  0  ->  -.  0  <  -u N
) )
116, 10sylbid 150 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  (
0  <  N  ->  -.  0  <  -u N
) )
1211imp 124 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  0  <  -u N
)
13 nngt0 8946 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  0  <  -u N )
1412, 13nsyl 628 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  -u N  e.  NN )
15 gt0ne0 8386 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  0  <  N )  ->  N  =/=  0 )
1615neneqd 2368 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  N  =  0
)
17 ioran 752 . . . . . . . . 9  |-  ( -.  ( -u N  e.  NN  \/  N  =  0 )  <->  ( -.  -u N  e.  NN  /\  -.  N  =  0
) )
1814, 16, 17sylanbrc 417 . . . . . . . 8  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  ( -u N  e.  NN  \/  N  =  0 ) )
1918pm2.21d 619 . . . . . . 7  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( ( -u N  e.  NN  \/  N  =  0 )  ->  N  e.  NN ) )
205, 19jaod 717 . . . . . 6  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  ->  N  e.  NN ) )
2120ex 115 . . . . 5  |-  ( N  e.  RR  ->  (
0  <  N  ->  ( ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  ->  N  e.  NN )
) )
2221com23 78 . . . 4  |-  ( N  e.  RR  ->  (
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  -> 
( 0  <  N  ->  N  e.  NN ) ) )
2322imp31 256 . . 3  |-  ( ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )  /\  0  <  N
)  ->  N  e.  NN )
244, 23impbii 126 . 2  |-  ( N  e.  NN  <->  ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )  /\  0  <  N ) )
25 elz 9257 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
26 3orrot 984 . . . . . 6  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0
) )
27 3orass 981 . . . . . 6  |-  ( ( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0 )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
2826, 27bitri 184 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
2928anbi2i 457 . . . 4  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
3025, 29bitri 184 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
3130anbi1i 458 . 2  |-  ( ( N  e.  ZZ  /\  0  <  N )  <->  ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )  /\  0  <  N ) )
3224, 31bitr4i 187 1  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    \/ w3o 977    = wceq 1353    e. wcel 2148   class class class wbr 4005   RRcr 7812   0cc0 7813    < clt 7994   -ucneg 8131   NNcn 8921   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-z 9256
This theorem is referenced by:  nnssz  9272  elnnz1  9278  znnsub  9306  nn0ge0div  9342  msqznn  9355  elpq  9650  elfz1b  10092  lbfzo0  10183  fzo1fzo0n0  10185  elfzo0z  10186  fzofzim  10190  elfzodifsumelfzo  10203  exp3val  10524  nnesq  10642  nnabscl  11111  cvgratnnlemabsle  11537  p1modz1  11803  nndivdvds  11805  zdvdsdc  11821  oddge22np1  11888  evennn2n  11890  nno  11913  nnoddm1d2  11917  divalglemex  11929  divalglemeuneg  11930  divalg  11931  ndvdsadd  11938  sqgcd  12032  qredeu  12099  prmind2  12122  sqrt2irrlem  12163  sqrt2irrap  12182  qgt0numnn  12201  oddprm  12261  pythagtriplem6  12272  pythagtriplem11  12276  pythagtriplem13  12278  pythagtriplem19  12284  pc2dvds  12331  pcadd  12341  mulgval  12991  mulgfng  12992  subgmulg  13053  lgseisenlem1  14489  2sqlem8  14509
  Copyright terms: Public domain W3C validator