| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnz | Unicode version | ||
| Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| elnnz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9043 |
. . . 4
| |
| 2 | orc 714 |
. . . 4
| |
| 3 | nngt0 9061 |
. . . 4
| |
| 4 | 1, 2, 3 | jca31 309 |
. . 3
|
| 5 | idd 21 |
. . . . . . 7
| |
| 6 | lt0neg2 8542 |
. . . . . . . . . . . 12
| |
| 7 | renegcl 8333 |
. . . . . . . . . . . . 13
| |
| 8 | 0re 8072 |
. . . . . . . . . . . . 13
| |
| 9 | ltnsym 8158 |
. . . . . . . . . . . . 13
| |
| 10 | 7, 8, 9 | sylancl 413 |
. . . . . . . . . . . 12
|
| 11 | 6, 10 | sylbid 150 |
. . . . . . . . . . 11
|
| 12 | 11 | imp 124 |
. . . . . . . . . 10
|
| 13 | nngt0 9061 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | nsyl 629 |
. . . . . . . . 9
|
| 15 | gt0ne0 8500 |
. . . . . . . . . 10
| |
| 16 | 15 | neneqd 2397 |
. . . . . . . . 9
|
| 17 | ioran 754 |
. . . . . . . . 9
| |
| 18 | 14, 16, 17 | sylanbrc 417 |
. . . . . . . 8
|
| 19 | 18 | pm2.21d 620 |
. . . . . . 7
|
| 20 | 5, 19 | jaod 719 |
. . . . . 6
|
| 21 | 20 | ex 115 |
. . . . 5
|
| 22 | 21 | com23 78 |
. . . 4
|
| 23 | 22 | imp31 256 |
. . 3
|
| 24 | 4, 23 | impbii 126 |
. 2
|
| 25 | elz 9374 |
. . . 4
| |
| 26 | 3orrot 987 |
. . . . . 6
| |
| 27 | 3orass 984 |
. . . . . 6
| |
| 28 | 26, 27 | bitri 184 |
. . . . 5
|
| 29 | 28 | anbi2i 457 |
. . . 4
|
| 30 | 25, 29 | bitri 184 |
. . 3
|
| 31 | 30 | anbi1i 458 |
. 2
|
| 32 | 24, 31 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-z 9373 |
| This theorem is referenced by: nnssz 9389 elnnz1 9395 znnsub 9424 nn0ge0div 9460 msqznn 9473 elpq 9770 elfz1b 10212 lbfzo0 10305 fzo1fzo0n0 10307 elfzo0z 10308 fzofzim 10312 elfzodifsumelfzo 10330 exp3val 10686 nnesq 10804 swrdlsw 11122 nnabscl 11411 cvgratnnlemabsle 11838 p1modz1 12105 nndivdvds 12107 zdvdsdc 12123 oddge22np1 12192 evennn2n 12194 nno 12217 nnoddm1d2 12221 divalglemex 12233 divalglemeuneg 12234 divalg 12235 ndvdsadd 12242 bitsfzolem 12265 sqgcd 12350 qredeu 12419 prmind2 12442 sqrt2irrlem 12483 sqrt2irrap 12502 qgt0numnn 12521 oddprm 12582 pythagtriplem6 12593 pythagtriplem11 12597 pythagtriplem13 12599 pythagtriplem19 12605 pc2dvds 12653 pcadd 12663 4sqlem11 12724 4sqlem12 12725 mulgval 13458 mulgfng 13460 subgmulg 13524 znidomb 14420 sgmnncl 15460 mersenne 15469 gausslemma2dlem1a 15535 lgseisenlem1 15547 lgsquadlem1 15554 lgsquadlem2 15555 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |