ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnz Unicode version

Theorem elnnz 9353
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elnnz  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )

Proof of Theorem elnnz
StepHypRef Expression
1 nnre 9014 . . . 4  |-  ( N  e.  NN  ->  N  e.  RR )
2 orc 713 . . . 4  |-  ( N  e.  NN  ->  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )
3 nngt0 9032 . . . 4  |-  ( N  e.  NN  ->  0  <  N )
41, 2, 3jca31 309 . . 3  |-  ( N  e.  NN  ->  (
( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )  /\  0  <  N
) )
5 idd 21 . . . . . . 7  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( N  e.  NN  ->  N  e.  NN ) )
6 lt0neg2 8513 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  (
0  <  N  <->  -u N  <  0 ) )
7 renegcl 8304 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  -u N  e.  RR )
8 0re 8043 . . . . . . . . . . . . 13  |-  0  e.  RR
9 ltnsym 8129 . . . . . . . . . . . . 13  |-  ( (
-u N  e.  RR  /\  0  e.  RR )  ->  ( -u N  <  0  ->  -.  0  <  -u N ) )
107, 8, 9sylancl 413 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  ( -u N  <  0  ->  -.  0  <  -u N
) )
116, 10sylbid 150 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  (
0  <  N  ->  -.  0  <  -u N
) )
1211imp 124 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  0  <  -u N
)
13 nngt0 9032 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  0  <  -u N )
1412, 13nsyl 629 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  -u N  e.  NN )
15 gt0ne0 8471 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  0  <  N )  ->  N  =/=  0 )
1615neneqd 2388 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  N  =  0
)
17 ioran 753 . . . . . . . . 9  |-  ( -.  ( -u N  e.  NN  \/  N  =  0 )  <->  ( -.  -u N  e.  NN  /\  -.  N  =  0
) )
1814, 16, 17sylanbrc 417 . . . . . . . 8  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  ( -u N  e.  NN  \/  N  =  0 ) )
1918pm2.21d 620 . . . . . . 7  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( ( -u N  e.  NN  \/  N  =  0 )  ->  N  e.  NN ) )
205, 19jaod 718 . . . . . 6  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  ->  N  e.  NN ) )
2120ex 115 . . . . 5  |-  ( N  e.  RR  ->  (
0  <  N  ->  ( ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  ->  N  e.  NN )
) )
2221com23 78 . . . 4  |-  ( N  e.  RR  ->  (
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  -> 
( 0  <  N  ->  N  e.  NN ) ) )
2322imp31 256 . . 3  |-  ( ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )  /\  0  <  N
)  ->  N  e.  NN )
244, 23impbii 126 . 2  |-  ( N  e.  NN  <->  ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )  /\  0  <  N ) )
25 elz 9345 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
26 3orrot 986 . . . . . 6  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0
) )
27 3orass 983 . . . . . 6  |-  ( ( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0 )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
2826, 27bitri 184 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
2928anbi2i 457 . . . 4  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
3025, 29bitri 184 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
3130anbi1i 458 . 2  |-  ( ( N  e.  ZZ  /\  0  <  N )  <->  ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )  /\  0  <  N ) )
3224, 31bitr4i 187 1  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167   class class class wbr 4034   RRcr 7895   0cc0 7896    < clt 8078   -ucneg 8215   NNcn 9007   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-z 9344
This theorem is referenced by:  nnssz  9360  elnnz1  9366  znnsub  9394  nn0ge0div  9430  msqznn  9443  elpq  9740  elfz1b  10182  lbfzo0  10274  fzo1fzo0n0  10276  elfzo0z  10277  fzofzim  10281  elfzodifsumelfzo  10294  exp3val  10650  nnesq  10768  nnabscl  11282  cvgratnnlemabsle  11709  p1modz1  11976  nndivdvds  11978  zdvdsdc  11994  oddge22np1  12063  evennn2n  12065  nno  12088  nnoddm1d2  12092  divalglemex  12104  divalglemeuneg  12105  divalg  12106  ndvdsadd  12113  bitsfzolem  12136  sqgcd  12221  qredeu  12290  prmind2  12313  sqrt2irrlem  12354  sqrt2irrap  12373  qgt0numnn  12392  oddprm  12453  pythagtriplem6  12464  pythagtriplem11  12468  pythagtriplem13  12470  pythagtriplem19  12476  pc2dvds  12524  pcadd  12534  4sqlem11  12595  4sqlem12  12596  mulgval  13328  mulgfng  13330  subgmulg  13394  znidomb  14290  sgmnncl  15308  mersenne  15317  gausslemma2dlem1a  15383  lgseisenlem1  15395  lgsquadlem1  15402  lgsquadlem2  15403  2sqlem8  15448
  Copyright terms: Public domain W3C validator