ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnz Unicode version

Theorem elnnz 9336
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elnnz  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )

Proof of Theorem elnnz
StepHypRef Expression
1 nnre 8997 . . . 4  |-  ( N  e.  NN  ->  N  e.  RR )
2 orc 713 . . . 4  |-  ( N  e.  NN  ->  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )
3 nngt0 9015 . . . 4  |-  ( N  e.  NN  ->  0  <  N )
41, 2, 3jca31 309 . . 3  |-  ( N  e.  NN  ->  (
( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )  /\  0  <  N
) )
5 idd 21 . . . . . . 7  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( N  e.  NN  ->  N  e.  NN ) )
6 lt0neg2 8496 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  (
0  <  N  <->  -u N  <  0 ) )
7 renegcl 8287 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  -u N  e.  RR )
8 0re 8026 . . . . . . . . . . . . 13  |-  0  e.  RR
9 ltnsym 8112 . . . . . . . . . . . . 13  |-  ( (
-u N  e.  RR  /\  0  e.  RR )  ->  ( -u N  <  0  ->  -.  0  <  -u N ) )
107, 8, 9sylancl 413 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  ( -u N  <  0  ->  -.  0  <  -u N
) )
116, 10sylbid 150 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  (
0  <  N  ->  -.  0  <  -u N
) )
1211imp 124 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  0  <  -u N
)
13 nngt0 9015 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  0  <  -u N )
1412, 13nsyl 629 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  -u N  e.  NN )
15 gt0ne0 8454 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  0  <  N )  ->  N  =/=  0 )
1615neneqd 2388 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  N  =  0
)
17 ioran 753 . . . . . . . . 9  |-  ( -.  ( -u N  e.  NN  \/  N  =  0 )  <->  ( -.  -u N  e.  NN  /\  -.  N  =  0
) )
1814, 16, 17sylanbrc 417 . . . . . . . 8  |-  ( ( N  e.  RR  /\  0  <  N )  ->  -.  ( -u N  e.  NN  \/  N  =  0 ) )
1918pm2.21d 620 . . . . . . 7  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( ( -u N  e.  NN  \/  N  =  0 )  ->  N  e.  NN ) )
205, 19jaod 718 . . . . . 6  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  ->  N  e.  NN ) )
2120ex 115 . . . . 5  |-  ( N  e.  RR  ->  (
0  <  N  ->  ( ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  ->  N  e.  NN )
) )
2221com23 78 . . . 4  |-  ( N  e.  RR  ->  (
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) )  -> 
( 0  <  N  ->  N  e.  NN ) ) )
2322imp31 256 . . 3  |-  ( ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )  /\  0  <  N
)  ->  N  e.  NN )
244, 23impbii 126 . 2  |-  ( N  e.  NN  <->  ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )  /\  0  <  N ) )
25 elz 9328 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
26 3orrot 986 . . . . . 6  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0
) )
27 3orass 983 . . . . . 6  |-  ( ( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0 )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
2826, 27bitri 184 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
2928anbi2i 457 . . . 4  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
3025, 29bitri 184 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
3130anbi1i 458 . 2  |-  ( ( N  e.  ZZ  /\  0  <  N )  <->  ( ( N  e.  RR  /\  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0
) ) )  /\  0  <  N ) )
3224, 31bitr4i 187 1  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167   class class class wbr 4033   RRcr 7878   0cc0 7879    < clt 8061   -ucneg 8198   NNcn 8990   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-z 9327
This theorem is referenced by:  nnssz  9343  elnnz1  9349  znnsub  9377  nn0ge0div  9413  msqznn  9426  elpq  9723  elfz1b  10165  lbfzo0  10257  fzo1fzo0n0  10259  elfzo0z  10260  fzofzim  10264  elfzodifsumelfzo  10277  exp3val  10633  nnesq  10751  nnabscl  11265  cvgratnnlemabsle  11692  p1modz1  11959  nndivdvds  11961  zdvdsdc  11977  oddge22np1  12046  evennn2n  12048  nno  12071  nnoddm1d2  12075  divalglemex  12087  divalglemeuneg  12088  divalg  12089  ndvdsadd  12096  bitsfzolem  12118  sqgcd  12196  qredeu  12265  prmind2  12288  sqrt2irrlem  12329  sqrt2irrap  12348  qgt0numnn  12367  oddprm  12428  pythagtriplem6  12439  pythagtriplem11  12443  pythagtriplem13  12445  pythagtriplem19  12451  pc2dvds  12499  pcadd  12509  4sqlem11  12570  4sqlem12  12571  mulgval  13252  mulgfng  13254  subgmulg  13318  znidomb  14214  sgmnncl  15224  mersenne  15233  gausslemma2dlem1a  15299  lgseisenlem1  15311  lgsquadlem1  15318  lgsquadlem2  15319  2sqlem8  15364
  Copyright terms: Public domain W3C validator