| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnz | Unicode version | ||
| Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| elnnz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9117 |
. . . 4
| |
| 2 | orc 717 |
. . . 4
| |
| 3 | nngt0 9135 |
. . . 4
| |
| 4 | 1, 2, 3 | jca31 309 |
. . 3
|
| 5 | idd 21 |
. . . . . . 7
| |
| 6 | lt0neg2 8616 |
. . . . . . . . . . . 12
| |
| 7 | renegcl 8407 |
. . . . . . . . . . . . 13
| |
| 8 | 0re 8146 |
. . . . . . . . . . . . 13
| |
| 9 | ltnsym 8232 |
. . . . . . . . . . . . 13
| |
| 10 | 7, 8, 9 | sylancl 413 |
. . . . . . . . . . . 12
|
| 11 | 6, 10 | sylbid 150 |
. . . . . . . . . . 11
|
| 12 | 11 | imp 124 |
. . . . . . . . . 10
|
| 13 | nngt0 9135 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | nsyl 631 |
. . . . . . . . 9
|
| 15 | gt0ne0 8574 |
. . . . . . . . . 10
| |
| 16 | 15 | neneqd 2421 |
. . . . . . . . 9
|
| 17 | ioran 757 |
. . . . . . . . 9
| |
| 18 | 14, 16, 17 | sylanbrc 417 |
. . . . . . . 8
|
| 19 | 18 | pm2.21d 622 |
. . . . . . 7
|
| 20 | 5, 19 | jaod 722 |
. . . . . 6
|
| 21 | 20 | ex 115 |
. . . . 5
|
| 22 | 21 | com23 78 |
. . . 4
|
| 23 | 22 | imp31 256 |
. . 3
|
| 24 | 4, 23 | impbii 126 |
. 2
|
| 25 | elz 9448 |
. . . 4
| |
| 26 | 3orrot 1008 |
. . . . . 6
| |
| 27 | 3orass 1005 |
. . . . . 6
| |
| 28 | 26, 27 | bitri 184 |
. . . . 5
|
| 29 | 28 | anbi2i 457 |
. . . 4
|
| 30 | 25, 29 | bitri 184 |
. . 3
|
| 31 | 30 | anbi1i 458 |
. 2
|
| 32 | 24, 31 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-z 9447 |
| This theorem is referenced by: nnssz 9463 elnnz1 9469 znnsub 9498 nn0ge0div 9534 msqznn 9547 elpq 9844 elfz1b 10286 lbfzo0 10381 fzo1fzo0n0 10383 elfzo0z 10384 fzofzim 10388 elfzodifsumelfzo 10407 exp3val 10763 nnesq 10881 swrdlsw 11201 pfxccatin12lem3 11264 nnabscl 11611 cvgratnnlemabsle 12038 p1modz1 12305 nndivdvds 12307 zdvdsdc 12323 oddge22np1 12392 evennn2n 12394 nno 12417 nnoddm1d2 12421 divalglemex 12433 divalglemeuneg 12434 divalg 12435 ndvdsadd 12442 bitsfzolem 12465 sqgcd 12550 qredeu 12619 prmind2 12642 sqrt2irrlem 12683 sqrt2irrap 12702 qgt0numnn 12721 oddprm 12782 pythagtriplem6 12793 pythagtriplem11 12797 pythagtriplem13 12799 pythagtriplem19 12805 pc2dvds 12853 pcadd 12863 4sqlem11 12924 4sqlem12 12925 mulgval 13659 mulgfng 13661 subgmulg 13725 znidomb 14622 sgmnncl 15662 mersenne 15671 gausslemma2dlem1a 15737 lgseisenlem1 15749 lgsquadlem1 15756 lgsquadlem2 15757 2sqlem8 15802 |
| Copyright terms: Public domain | W3C validator |