ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elznn Unicode version

Theorem elznn 9390
Description: Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.)
Assertion
Ref Expression
elznn  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  -u N  e.  NN0 ) ) )

Proof of Theorem elznn
StepHypRef Expression
1 elz 9376 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 3orrot 987 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0
) )
3 3orass 984 . . . . 5  |-  ( ( N  e.  NN  \/  -u N  e.  NN  \/  N  =  0 )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
42, 3bitri 184 . . . 4  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) )
5 elnn0 9299 . . . . . 6  |-  ( -u N  e.  NN0  <->  ( -u N  e.  NN  \/  -u N  =  0 ) )
6 recn 8060 . . . . . . . 8  |-  ( N  e.  RR  ->  N  e.  CC )
76negeq0d 8377 . . . . . . 7  |-  ( N  e.  RR  ->  ( N  =  0  <->  -u N  =  0 ) )
87orbi2d 792 . . . . . 6  |-  ( N  e.  RR  ->  (
( -u N  e.  NN  \/  N  =  0
)  <->  ( -u N  e.  NN  \/  -u N  =  0 ) ) )
95, 8bitr4id 199 . . . . 5  |-  ( N  e.  RR  ->  ( -u N  e.  NN0  <->  ( -u N  e.  NN  \/  N  =  0 ) ) )
109orbi2d 792 . . . 4  |-  ( N  e.  RR  ->  (
( N  e.  NN  \/  -u N  e.  NN0 ) 
<->  ( N  e.  NN  \/  ( -u N  e.  NN  \/  N  =  0 ) ) ) )
114, 10bitr4id 199 . . 3  |-  ( N  e.  RR  ->  (
( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) 
<->  ( N  e.  NN  \/  -u N  e.  NN0 ) ) )
1211pm5.32i 454 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  -u N  e.  NN0 ) ) )
131, 12bitri 184 1  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  -u N  e.  NN0 ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    = wceq 1373    e. wcel 2176   RRcr 7926   0cc0 7927   -ucneg 8246   NNcn 9038   NN0cn0 9297   ZZcz 9374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586  ax-resscn 8019  ax-1cn 8020  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-sub 8247  df-neg 8248  df-n0 9298  df-z 9375
This theorem is referenced by:  zzlesq  10855  znnen  12802  logbgcd1irraplemexp  15473
  Copyright terms: Public domain W3C validator