ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facavg Unicode version

Theorem facavg 10857
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facavg  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) )

Proof of Theorem facavg
StepHypRef Expression
1 nn0addcl 9303 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )
21nn0zd 9465 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  ZZ )
3 2nn 9171 . . . . . 6  |-  2  e.  NN
4 znq 9717 . . . . . 6  |-  ( ( ( M  +  N
)  e.  ZZ  /\  2  e.  NN )  ->  ( ( M  +  N )  /  2
)  e.  QQ )
52, 3, 4sylancl 413 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  +  N )  /  2
)  e.  QQ )
6 flqle 10387 . . . . 5  |-  ( ( ( M  +  N
)  /  2 )  e.  QQ  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
) )
75, 6syl 14 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  <_  ( ( M  +  N )  /  2 ) )
85flqcld 10386 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  ZZ )
98zred 9467 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR )
10 nn0readdcl 9327 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  RR )
1110rehalfcld 9257 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  +  N )  /  2
)  e.  RR )
12 nn0re 9277 . . . . . 6  |-  ( M  e.  NN0  ->  M  e.  RR )
1312adantr 276 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  RR )
14 letr 8128 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR  /\  ( ( M  +  N )  /  2
)  e.  RR  /\  M  e.  RR )  ->  ( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  M )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M ) )
159, 11, 13, 14syl3anc 1249 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  M )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M ) )
167, 15mpand 429 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  ->  ( |_ `  (
( M  +  N
)  /  2 ) )  <_  M )
)
171nn0ge0d 9324 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  ( M  +  N ) )
18 halfnneg2 9242 . . . . . . 7  |-  ( ( M  +  N )  e.  RR  ->  (
0  <_  ( M  +  N )  <->  0  <_  ( ( M  +  N
)  /  2 ) ) )
1910, 18syl 14 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <_  ( M  +  N )  <->  0  <_  ( ( M  +  N )  / 
2 ) ) )
2017, 19mpbid 147 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  ( ( M  +  N )  /  2 ) )
21 flqge0nn0 10402 . . . . 5  |-  ( ( ( ( M  +  N )  /  2
)  e.  QQ  /\  0  <_  ( ( M  +  N )  / 
2 ) )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0 )
225, 20, 21syl2anc 411 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0 )
23 simpl 109 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
24 facwordi 10851 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0  /\  M  e.  NN0  /\  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
) )
25243exp 1204 . . . 4  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( M  e.  NN0  ->  ( ( |_ `  ( ( M  +  N )  /  2 ) )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
) ) ) )
2622, 23, 25sylc 62 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( |_ `  ( ( M  +  N )  /  2
) )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ! `  M ) ) )
27 faccl 10846 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
2827nncnd 9023 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  CC )
2928mulridd 8062 . . . . . 6  |-  ( M  e.  NN0  ->  ( ( ! `  M )  x.  1 )  =  ( ! `  M
) )
3029adantr 276 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  1 )  =  ( ! `
 M ) )
31 faccl 10846 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3231nnred 9022 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
3332adantl 277 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  N
)  e.  RR )
3427nnred 9022 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  RR )
3527nnnn0d 9321 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( ! `
 M )  e. 
NN0 )
3635nn0ge0d 9324 . . . . . . . 8  |-  ( M  e.  NN0  ->  0  <_ 
( ! `  M
) )
3734, 36jca 306 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M
) ) )
3837adantr 276 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )
3931nnge1d 9052 . . . . . . 7  |-  ( N  e.  NN0  ->  1  <_ 
( ! `  N
) )
4039adantl 277 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
1  <_  ( ! `  N ) )
41 1re 8044 . . . . . . 7  |-  1  e.  RR
42 lemul2a 8905 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  ( ! `  N
)  e.  RR  /\  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )  /\  1  <_  ( ! `  N )
)  ->  ( ( ! `  M )  x.  1 )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )
4341, 42mp3anl1 1342 . . . . . 6  |-  ( ( ( ( ! `  N )  e.  RR  /\  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )  /\  1  <_  ( ! `  N )
)  ->  ( ( ! `  M )  x.  1 )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )
4433, 38, 40, 43syl21anc 1248 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  1 )  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
4530, 44eqbrtrrd 4058 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  M
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
46 faccl 10846 . . . . . . 7  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  e.  NN )
4722, 46syl 14 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  NN )
4847nnred 9022 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR )
4934adantr 276 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  M
)  e.  RR )
50 remulcl 8026 . . . . . 6  |-  ( ( ( ! `  M
)  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( ( ! `  M )  x.  ( ! `  N )
)  e.  RR )
5134, 32, 50syl2an 289 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  ( ! `  N )
)  e.  RR )
52 letr 8128 . . . . 5  |-  ( ( ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR  /\  ( ! `  M )  e.  RR  /\  ( ( ! `  M )  x.  ( ! `  N ) )  e.  RR )  ->  (
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  M )  /\  ( ! `  M )  <_  ( ( ! `  M )  x.  ( ! `  N )
) )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
5348, 49, 51, 52syl3anc 1249 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
)  /\  ( ! `  M )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )  ->  ( ! `  ( |_ `  (
( M  +  N
)  /  2 ) ) )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) ) )
5445, 53mpan2d 428 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  M )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
5516, 26, 543syld 57 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) ) )
56 nn0re 9277 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
5756adantl 277 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
58 letr 8128 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR  /\  ( ( M  +  N )  /  2
)  e.  RR  /\  N  e.  RR )  ->  ( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  N )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N ) )
599, 11, 57, 58syl3anc 1249 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  N )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N ) )
607, 59mpand 429 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  N  ->  ( |_ `  (
( M  +  N
)  /  2 ) )  <_  N )
)
61 simpr 110 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  NN0 )
62 facwordi 10851 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0  /\  N  e.  NN0  /\  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
) )
63623exp 1204 . . . 4  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( N  e.  NN0  ->  ( ( |_ `  ( ( M  +  N )  /  2 ) )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
) ) ) )
6422, 61, 63sylc 62 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( |_ `  ( ( M  +  N )  /  2
) )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ! `  N ) ) )
6531nncnd 9023 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
6665mulid2d 8064 . . . . . 6  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  =  ( ! `  N
) )
6766adantl 277 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  x.  ( ! `  N )
)  =  ( ! `
 N ) )
6831nnnn0d 9321 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ! `
 N )  e. 
NN0 )
6968nn0ge0d 9324 . . . . . . . 8  |-  ( N  e.  NN0  ->  0  <_ 
( ! `  N
) )
7032, 69jca 306 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N
) ) )
7170adantl 277 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )
7227nnge1d 9052 . . . . . . 7  |-  ( M  e.  NN0  ->  1  <_ 
( ! `  M
) )
7372adantr 276 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
1  <_  ( ! `  M ) )
74 lemul1a 8904 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  ( ! `  M
)  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )  /\  1  <_  ( ! `  M )
)  ->  ( 1  x.  ( ! `  N ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) )
7541, 74mp3anl1 1342 . . . . . 6  |-  ( ( ( ( ! `  M )  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )  /\  1  <_  ( ! `  M )
)  ->  ( 1  x.  ( ! `  N ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) )
7649, 71, 73, 75syl21anc 1248 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  x.  ( ! `  N )
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
7767, 76eqbrtrrd 4058 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  N
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
78 letr 8128 . . . . 5  |-  ( ( ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR  /\  ( ! `  N )  e.  RR  /\  ( ( ! `  M )  x.  ( ! `  N ) )  e.  RR )  ->  (
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  N )  /\  ( ! `  N )  <_  ( ( ! `  M )  x.  ( ! `  N )
) )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
7948, 33, 51, 78syl3anc 1249 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
)  /\  ( ! `  N )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )  ->  ( ! `  ( |_ `  (
( M  +  N
)  /  2 ) ) )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) ) )
8077, 79mpan2d 428 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  N )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
8160, 64, 803syld 57 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) ) )
8223nn0zd 9465 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
83 zq 9719 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  QQ )
8482, 83syl 14 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  QQ )
8561nn0zd 9465 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
86 zq 9719 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  QQ )
8785, 86syl 14 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  QQ )
88 qavgle 10367 . . 3  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( ( ( M  +  N )  / 
2 )  <_  M  \/  ( ( M  +  N )  /  2
)  <_  N )
)
8984, 87, 88syl2anc 411 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  \/  ( ( M  +  N )  /  2
)  <_  N )
)
9055, 81, 89mpjaod 719 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903    <_ cle 8081    / cdiv 8718   NNcn 9009   2c2 9060   NN0cn0 9268   ZZcz 9345   QQcq 9712   |_cfl 10377   !cfa 10836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fl 10379  df-seqfrec 10559  df-fac 10837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator