Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > facavg | Unicode version |
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.) |
Ref | Expression |
---|---|
facavg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcl 9149 | . . . . . . 7 | |
2 | 1 | nn0zd 9311 | . . . . . 6 |
3 | 2nn 9018 | . . . . . 6 | |
4 | znq 9562 | . . . . . 6 | |
5 | 2, 3, 4 | sylancl 410 | . . . . 5 |
6 | flqle 10213 | . . . . 5 | |
7 | 5, 6 | syl 14 | . . . 4 |
8 | 5 | flqcld 10212 | . . . . . 6 |
9 | 8 | zred 9313 | . . . . 5 |
10 | nn0readdcl 9173 | . . . . . 6 | |
11 | 10 | rehalfcld 9103 | . . . . 5 |
12 | nn0re 9123 | . . . . . 6 | |
13 | 12 | adantr 274 | . . . . 5 |
14 | letr 7981 | . . . . 5 | |
15 | 9, 11, 13, 14 | syl3anc 1228 | . . . 4 |
16 | 7, 15 | mpand 426 | . . 3 |
17 | 1 | nn0ge0d 9170 | . . . . . 6 |
18 | halfnneg2 9089 | . . . . . . 7 | |
19 | 10, 18 | syl 14 | . . . . . 6 |
20 | 17, 19 | mpbid 146 | . . . . 5 |
21 | flqge0nn0 10228 | . . . . 5 | |
22 | 5, 20, 21 | syl2anc 409 | . . . 4 |
23 | simpl 108 | . . . 4 | |
24 | facwordi 10653 | . . . . 5 | |
25 | 24 | 3exp 1192 | . . . 4 |
26 | 22, 23, 25 | sylc 62 | . . 3 |
27 | faccl 10648 | . . . . . . . 8 | |
28 | 27 | nncnd 8871 | . . . . . . 7 |
29 | 28 | mulid1d 7916 | . . . . . 6 |
30 | 29 | adantr 274 | . . . . 5 |
31 | faccl 10648 | . . . . . . . 8 | |
32 | 31 | nnred 8870 | . . . . . . 7 |
33 | 32 | adantl 275 | . . . . . 6 |
34 | 27 | nnred 8870 | . . . . . . . 8 |
35 | 27 | nnnn0d 9167 | . . . . . . . . 9 |
36 | 35 | nn0ge0d 9170 | . . . . . . . 8 |
37 | 34, 36 | jca 304 | . . . . . . 7 |
38 | 37 | adantr 274 | . . . . . 6 |
39 | 31 | nnge1d 8900 | . . . . . . 7 |
40 | 39 | adantl 275 | . . . . . 6 |
41 | 1re 7898 | . . . . . . 7 | |
42 | lemul2a 8754 | . . . . . . 7 | |
43 | 41, 42 | mp3anl1 1321 | . . . . . 6 |
44 | 33, 38, 40, 43 | syl21anc 1227 | . . . . 5 |
45 | 30, 44 | eqbrtrrd 4006 | . . . 4 |
46 | faccl 10648 | . . . . . . 7 | |
47 | 22, 46 | syl 14 | . . . . . 6 |
48 | 47 | nnred 8870 | . . . . 5 |
49 | 34 | adantr 274 | . . . . 5 |
50 | remulcl 7881 | . . . . . 6 | |
51 | 34, 32, 50 | syl2an 287 | . . . . 5 |
52 | letr 7981 | . . . . 5 | |
53 | 48, 49, 51, 52 | syl3anc 1228 | . . . 4 |
54 | 45, 53 | mpan2d 425 | . . 3 |
55 | 16, 26, 54 | 3syld 57 | . 2 |
56 | nn0re 9123 | . . . . . 6 | |
57 | 56 | adantl 275 | . . . . 5 |
58 | letr 7981 | . . . . 5 | |
59 | 9, 11, 57, 58 | syl3anc 1228 | . . . 4 |
60 | 7, 59 | mpand 426 | . . 3 |
61 | simpr 109 | . . . 4 | |
62 | facwordi 10653 | . . . . 5 | |
63 | 62 | 3exp 1192 | . . . 4 |
64 | 22, 61, 63 | sylc 62 | . . 3 |
65 | 31 | nncnd 8871 | . . . . . . 7 |
66 | 65 | mulid2d 7917 | . . . . . 6 |
67 | 66 | adantl 275 | . . . . 5 |
68 | 31 | nnnn0d 9167 | . . . . . . . . 9 |
69 | 68 | nn0ge0d 9170 | . . . . . . . 8 |
70 | 32, 69 | jca 304 | . . . . . . 7 |
71 | 70 | adantl 275 | . . . . . 6 |
72 | 27 | nnge1d 8900 | . . . . . . 7 |
73 | 72 | adantr 274 | . . . . . 6 |
74 | lemul1a 8753 | . . . . . . 7 | |
75 | 41, 74 | mp3anl1 1321 | . . . . . 6 |
76 | 49, 71, 73, 75 | syl21anc 1227 | . . . . 5 |
77 | 67, 76 | eqbrtrrd 4006 | . . . 4 |
78 | letr 7981 | . . . . 5 | |
79 | 48, 33, 51, 78 | syl3anc 1228 | . . . 4 |
80 | 77, 79 | mpan2d 425 | . . 3 |
81 | 60, 64, 80 | 3syld 57 | . 2 |
82 | 23 | nn0zd 9311 | . . . 4 |
83 | zq 9564 | . . . 4 | |
84 | 82, 83 | syl 14 | . . 3 |
85 | 61 | nn0zd 9311 | . . . 4 |
86 | zq 9564 | . . . 4 | |
87 | 85, 86 | syl 14 | . . 3 |
88 | qavgle 10194 | . . 3 | |
89 | 84, 87, 88 | syl2anc 409 | . 2 |
90 | 55, 81, 89 | mpjaod 708 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 class class class wbr 3982 cfv 5188 (class class class)co 5842 cr 7752 cc0 7753 c1 7754 caddc 7756 cmul 7758 cle 7934 cdiv 8568 cn 8857 c2 8908 cn0 9114 cz 9191 cq 9557 cfl 10203 cfa 10638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fl 10205 df-seqfrec 10381 df-fac 10639 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |