| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > facavg | Unicode version | ||
| Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.) |
| Ref | Expression |
|---|---|
| facavg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0addcl 9303 |
. . . . . . 7
| |
| 2 | 1 | nn0zd 9465 |
. . . . . 6
|
| 3 | 2nn 9171 |
. . . . . 6
| |
| 4 | znq 9717 |
. . . . . 6
| |
| 5 | 2, 3, 4 | sylancl 413 |
. . . . 5
|
| 6 | flqle 10387 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | 5 | flqcld 10386 |
. . . . . 6
|
| 9 | 8 | zred 9467 |
. . . . 5
|
| 10 | nn0readdcl 9327 |
. . . . . 6
| |
| 11 | 10 | rehalfcld 9257 |
. . . . 5
|
| 12 | nn0re 9277 |
. . . . . 6
| |
| 13 | 12 | adantr 276 |
. . . . 5
|
| 14 | letr 8128 |
. . . . 5
| |
| 15 | 9, 11, 13, 14 | syl3anc 1249 |
. . . 4
|
| 16 | 7, 15 | mpand 429 |
. . 3
|
| 17 | 1 | nn0ge0d 9324 |
. . . . . 6
|
| 18 | halfnneg2 9242 |
. . . . . . 7
| |
| 19 | 10, 18 | syl 14 |
. . . . . 6
|
| 20 | 17, 19 | mpbid 147 |
. . . . 5
|
| 21 | flqge0nn0 10402 |
. . . . 5
| |
| 22 | 5, 20, 21 | syl2anc 411 |
. . . 4
|
| 23 | simpl 109 |
. . . 4
| |
| 24 | facwordi 10851 |
. . . . 5
| |
| 25 | 24 | 3exp 1204 |
. . . 4
|
| 26 | 22, 23, 25 | sylc 62 |
. . 3
|
| 27 | faccl 10846 |
. . . . . . . 8
| |
| 28 | 27 | nncnd 9023 |
. . . . . . 7
|
| 29 | 28 | mulridd 8062 |
. . . . . 6
|
| 30 | 29 | adantr 276 |
. . . . 5
|
| 31 | faccl 10846 |
. . . . . . . 8
| |
| 32 | 31 | nnred 9022 |
. . . . . . 7
|
| 33 | 32 | adantl 277 |
. . . . . 6
|
| 34 | 27 | nnred 9022 |
. . . . . . . 8
|
| 35 | 27 | nnnn0d 9321 |
. . . . . . . . 9
|
| 36 | 35 | nn0ge0d 9324 |
. . . . . . . 8
|
| 37 | 34, 36 | jca 306 |
. . . . . . 7
|
| 38 | 37 | adantr 276 |
. . . . . 6
|
| 39 | 31 | nnge1d 9052 |
. . . . . . 7
|
| 40 | 39 | adantl 277 |
. . . . . 6
|
| 41 | 1re 8044 |
. . . . . . 7
| |
| 42 | lemul2a 8905 |
. . . . . . 7
| |
| 43 | 41, 42 | mp3anl1 1342 |
. . . . . 6
|
| 44 | 33, 38, 40, 43 | syl21anc 1248 |
. . . . 5
|
| 45 | 30, 44 | eqbrtrrd 4058 |
. . . 4
|
| 46 | faccl 10846 |
. . . . . . 7
| |
| 47 | 22, 46 | syl 14 |
. . . . . 6
|
| 48 | 47 | nnred 9022 |
. . . . 5
|
| 49 | 34 | adantr 276 |
. . . . 5
|
| 50 | remulcl 8026 |
. . . . . 6
| |
| 51 | 34, 32, 50 | syl2an 289 |
. . . . 5
|
| 52 | letr 8128 |
. . . . 5
| |
| 53 | 48, 49, 51, 52 | syl3anc 1249 |
. . . 4
|
| 54 | 45, 53 | mpan2d 428 |
. . 3
|
| 55 | 16, 26, 54 | 3syld 57 |
. 2
|
| 56 | nn0re 9277 |
. . . . . 6
| |
| 57 | 56 | adantl 277 |
. . . . 5
|
| 58 | letr 8128 |
. . . . 5
| |
| 59 | 9, 11, 57, 58 | syl3anc 1249 |
. . . 4
|
| 60 | 7, 59 | mpand 429 |
. . 3
|
| 61 | simpr 110 |
. . . 4
| |
| 62 | facwordi 10851 |
. . . . 5
| |
| 63 | 62 | 3exp 1204 |
. . . 4
|
| 64 | 22, 61, 63 | sylc 62 |
. . 3
|
| 65 | 31 | nncnd 9023 |
. . . . . . 7
|
| 66 | 65 | mulid2d 8064 |
. . . . . 6
|
| 67 | 66 | adantl 277 |
. . . . 5
|
| 68 | 31 | nnnn0d 9321 |
. . . . . . . . 9
|
| 69 | 68 | nn0ge0d 9324 |
. . . . . . . 8
|
| 70 | 32, 69 | jca 306 |
. . . . . . 7
|
| 71 | 70 | adantl 277 |
. . . . . 6
|
| 72 | 27 | nnge1d 9052 |
. . . . . . 7
|
| 73 | 72 | adantr 276 |
. . . . . 6
|
| 74 | lemul1a 8904 |
. . . . . . 7
| |
| 75 | 41, 74 | mp3anl1 1342 |
. . . . . 6
|
| 76 | 49, 71, 73, 75 | syl21anc 1248 |
. . . . 5
|
| 77 | 67, 76 | eqbrtrrd 4058 |
. . . 4
|
| 78 | letr 8128 |
. . . . 5
| |
| 79 | 48, 33, 51, 78 | syl3anc 1249 |
. . . 4
|
| 80 | 77, 79 | mpan2d 428 |
. . 3
|
| 81 | 60, 64, 80 | 3syld 57 |
. 2
|
| 82 | 23 | nn0zd 9465 |
. . . 4
|
| 83 | zq 9719 |
. . . 4
| |
| 84 | 82, 83 | syl 14 |
. . 3
|
| 85 | 61 | nn0zd 9465 |
. . . 4
|
| 86 | zq 9719 |
. . . 4
| |
| 87 | 85, 86 | syl 14 |
. . 3
|
| 88 | qavgle 10367 |
. . 3
| |
| 89 | 84, 87, 88 | syl2anc 411 |
. 2
|
| 90 | 55, 81, 89 | mpjaod 719 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-n0 9269 df-z 9346 df-uz 9621 df-q 9713 df-rp 9748 df-fl 10379 df-seqfrec 10559 df-fac 10837 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |