ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facavg Unicode version

Theorem facavg 10891
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facavg  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) )

Proof of Theorem facavg
StepHypRef Expression
1 nn0addcl 9330 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )
21nn0zd 9493 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  ZZ )
3 2nn 9198 . . . . . 6  |-  2  e.  NN
4 znq 9745 . . . . . 6  |-  ( ( ( M  +  N
)  e.  ZZ  /\  2  e.  NN )  ->  ( ( M  +  N )  /  2
)  e.  QQ )
52, 3, 4sylancl 413 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  +  N )  /  2
)  e.  QQ )
6 flqle 10421 . . . . 5  |-  ( ( ( M  +  N
)  /  2 )  e.  QQ  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
) )
75, 6syl 14 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  <_  ( ( M  +  N )  /  2 ) )
85flqcld 10420 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  ZZ )
98zred 9495 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR )
10 nn0readdcl 9354 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  RR )
1110rehalfcld 9284 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  +  N )  /  2
)  e.  RR )
12 nn0re 9304 . . . . . 6  |-  ( M  e.  NN0  ->  M  e.  RR )
1312adantr 276 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  RR )
14 letr 8155 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR  /\  ( ( M  +  N )  /  2
)  e.  RR  /\  M  e.  RR )  ->  ( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  M )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M ) )
159, 11, 13, 14syl3anc 1250 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  M )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M ) )
167, 15mpand 429 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  ->  ( |_ `  (
( M  +  N
)  /  2 ) )  <_  M )
)
171nn0ge0d 9351 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  ( M  +  N ) )
18 halfnneg2 9269 . . . . . . 7  |-  ( ( M  +  N )  e.  RR  ->  (
0  <_  ( M  +  N )  <->  0  <_  ( ( M  +  N
)  /  2 ) ) )
1910, 18syl 14 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <_  ( M  +  N )  <->  0  <_  ( ( M  +  N )  / 
2 ) ) )
2017, 19mpbid 147 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  ( ( M  +  N )  /  2 ) )
21 flqge0nn0 10436 . . . . 5  |-  ( ( ( ( M  +  N )  /  2
)  e.  QQ  /\  0  <_  ( ( M  +  N )  / 
2 ) )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0 )
225, 20, 21syl2anc 411 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0 )
23 simpl 109 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
24 facwordi 10885 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0  /\  M  e.  NN0  /\  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
) )
25243exp 1205 . . . 4  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( M  e.  NN0  ->  ( ( |_ `  ( ( M  +  N )  /  2 ) )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
) ) ) )
2622, 23, 25sylc 62 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( |_ `  ( ( M  +  N )  /  2
) )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ! `  M ) ) )
27 faccl 10880 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
2827nncnd 9050 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  CC )
2928mulridd 8089 . . . . . 6  |-  ( M  e.  NN0  ->  ( ( ! `  M )  x.  1 )  =  ( ! `  M
) )
3029adantr 276 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  1 )  =  ( ! `
 M ) )
31 faccl 10880 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3231nnred 9049 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
3332adantl 277 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  N
)  e.  RR )
3427nnred 9049 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  RR )
3527nnnn0d 9348 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( ! `
 M )  e. 
NN0 )
3635nn0ge0d 9351 . . . . . . . 8  |-  ( M  e.  NN0  ->  0  <_ 
( ! `  M
) )
3734, 36jca 306 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M
) ) )
3837adantr 276 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )
3931nnge1d 9079 . . . . . . 7  |-  ( N  e.  NN0  ->  1  <_ 
( ! `  N
) )
4039adantl 277 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
1  <_  ( ! `  N ) )
41 1re 8071 . . . . . . 7  |-  1  e.  RR
42 lemul2a 8932 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  ( ! `  N
)  e.  RR  /\  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )  /\  1  <_  ( ! `  N )
)  ->  ( ( ! `  M )  x.  1 )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )
4341, 42mp3anl1 1344 . . . . . 6  |-  ( ( ( ( ! `  N )  e.  RR  /\  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )  /\  1  <_  ( ! `  N )
)  ->  ( ( ! `  M )  x.  1 )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )
4433, 38, 40, 43syl21anc 1249 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  1 )  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
4530, 44eqbrtrrd 4068 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  M
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
46 faccl 10880 . . . . . . 7  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  e.  NN )
4722, 46syl 14 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  NN )
4847nnred 9049 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR )
4934adantr 276 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  M
)  e.  RR )
50 remulcl 8053 . . . . . 6  |-  ( ( ( ! `  M
)  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( ( ! `  M )  x.  ( ! `  N )
)  e.  RR )
5134, 32, 50syl2an 289 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  ( ! `  N )
)  e.  RR )
52 letr 8155 . . . . 5  |-  ( ( ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR  /\  ( ! `  M )  e.  RR  /\  ( ( ! `  M )  x.  ( ! `  N ) )  e.  RR )  ->  (
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  M )  /\  ( ! `  M )  <_  ( ( ! `  M )  x.  ( ! `  N )
) )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
5348, 49, 51, 52syl3anc 1250 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
)  /\  ( ! `  M )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )  ->  ( ! `  ( |_ `  (
( M  +  N
)  /  2 ) ) )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) ) )
5445, 53mpan2d 428 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  M )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
5516, 26, 543syld 57 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) ) )
56 nn0re 9304 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
5756adantl 277 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
58 letr 8155 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR  /\  ( ( M  +  N )  /  2
)  e.  RR  /\  N  e.  RR )  ->  ( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  N )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N ) )
599, 11, 57, 58syl3anc 1250 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  N )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N ) )
607, 59mpand 429 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  N  ->  ( |_ `  (
( M  +  N
)  /  2 ) )  <_  N )
)
61 simpr 110 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  NN0 )
62 facwordi 10885 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0  /\  N  e.  NN0  /\  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
) )
63623exp 1205 . . . 4  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( N  e.  NN0  ->  ( ( |_ `  ( ( M  +  N )  /  2 ) )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
) ) ) )
6422, 61, 63sylc 62 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( |_ `  ( ( M  +  N )  /  2
) )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ! `  N ) ) )
6531nncnd 9050 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
6665mulid2d 8091 . . . . . 6  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  =  ( ! `  N
) )
6766adantl 277 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  x.  ( ! `  N )
)  =  ( ! `
 N ) )
6831nnnn0d 9348 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ! `
 N )  e. 
NN0 )
6968nn0ge0d 9351 . . . . . . . 8  |-  ( N  e.  NN0  ->  0  <_ 
( ! `  N
) )
7032, 69jca 306 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N
) ) )
7170adantl 277 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )
7227nnge1d 9079 . . . . . . 7  |-  ( M  e.  NN0  ->  1  <_ 
( ! `  M
) )
7372adantr 276 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
1  <_  ( ! `  M ) )
74 lemul1a 8931 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  ( ! `  M
)  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )  /\  1  <_  ( ! `  M )
)  ->  ( 1  x.  ( ! `  N ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) )
7541, 74mp3anl1 1344 . . . . . 6  |-  ( ( ( ( ! `  M )  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )  /\  1  <_  ( ! `  M )
)  ->  ( 1  x.  ( ! `  N ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) )
7649, 71, 73, 75syl21anc 1249 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  x.  ( ! `  N )
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
7767, 76eqbrtrrd 4068 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  N
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
78 letr 8155 . . . . 5  |-  ( ( ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR  /\  ( ! `  N )  e.  RR  /\  ( ( ! `  M )  x.  ( ! `  N ) )  e.  RR )  ->  (
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  N )  /\  ( ! `  N )  <_  ( ( ! `  M )  x.  ( ! `  N )
) )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
7948, 33, 51, 78syl3anc 1250 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
)  /\  ( ! `  N )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )  ->  ( ! `  ( |_ `  (
( M  +  N
)  /  2 ) ) )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) ) )
8077, 79mpan2d 428 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  N )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
8160, 64, 803syld 57 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) ) )
8223nn0zd 9493 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
83 zq 9747 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  QQ )
8482, 83syl 14 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  QQ )
8561nn0zd 9493 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
86 zq 9747 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  QQ )
8785, 86syl 14 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  QQ )
88 qavgle 10401 . . 3  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( ( ( M  +  N )  / 
2 )  <_  M  \/  ( ( M  +  N )  /  2
)  <_  N )
)
8984, 87, 88syl2anc 411 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  \/  ( ( M  +  N )  /  2
)  <_  N )
)
9055, 81, 89mpjaod 720 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    <_ cle 8108    / cdiv 8745   NNcn 9036   2c2 9087   NN0cn0 9295   ZZcz 9372   QQcq 9740   |_cfl 10411   !cfa 10870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fl 10413  df-seqfrec 10593  df-fac 10871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator