| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > facavg | Unicode version | ||
| Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.) | 
| Ref | Expression | 
|---|---|
| facavg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nn0addcl 9284 | 
. . . . . . 7
 | |
| 2 | 1 | nn0zd 9446 | 
. . . . . 6
 | 
| 3 | 2nn 9152 | 
. . . . . 6
 | |
| 4 | znq 9698 | 
. . . . . 6
 | |
| 5 | 2, 3, 4 | sylancl 413 | 
. . . . 5
 | 
| 6 | flqle 10368 | 
. . . . 5
 | |
| 7 | 5, 6 | syl 14 | 
. . . 4
 | 
| 8 | 5 | flqcld 10367 | 
. . . . . 6
 | 
| 9 | 8 | zred 9448 | 
. . . . 5
 | 
| 10 | nn0readdcl 9308 | 
. . . . . 6
 | |
| 11 | 10 | rehalfcld 9238 | 
. . . . 5
 | 
| 12 | nn0re 9258 | 
. . . . . 6
 | |
| 13 | 12 | adantr 276 | 
. . . . 5
 | 
| 14 | letr 8109 | 
. . . . 5
 | |
| 15 | 9, 11, 13, 14 | syl3anc 1249 | 
. . . 4
 | 
| 16 | 7, 15 | mpand 429 | 
. . 3
 | 
| 17 | 1 | nn0ge0d 9305 | 
. . . . . 6
 | 
| 18 | halfnneg2 9223 | 
. . . . . . 7
 | |
| 19 | 10, 18 | syl 14 | 
. . . . . 6
 | 
| 20 | 17, 19 | mpbid 147 | 
. . . . 5
 | 
| 21 | flqge0nn0 10383 | 
. . . . 5
 | |
| 22 | 5, 20, 21 | syl2anc 411 | 
. . . 4
 | 
| 23 | simpl 109 | 
. . . 4
 | |
| 24 | facwordi 10832 | 
. . . . 5
 | |
| 25 | 24 | 3exp 1204 | 
. . . 4
 | 
| 26 | 22, 23, 25 | sylc 62 | 
. . 3
 | 
| 27 | faccl 10827 | 
. . . . . . . 8
 | |
| 28 | 27 | nncnd 9004 | 
. . . . . . 7
 | 
| 29 | 28 | mulridd 8043 | 
. . . . . 6
 | 
| 30 | 29 | adantr 276 | 
. . . . 5
 | 
| 31 | faccl 10827 | 
. . . . . . . 8
 | |
| 32 | 31 | nnred 9003 | 
. . . . . . 7
 | 
| 33 | 32 | adantl 277 | 
. . . . . 6
 | 
| 34 | 27 | nnred 9003 | 
. . . . . . . 8
 | 
| 35 | 27 | nnnn0d 9302 | 
. . . . . . . . 9
 | 
| 36 | 35 | nn0ge0d 9305 | 
. . . . . . . 8
 | 
| 37 | 34, 36 | jca 306 | 
. . . . . . 7
 | 
| 38 | 37 | adantr 276 | 
. . . . . 6
 | 
| 39 | 31 | nnge1d 9033 | 
. . . . . . 7
 | 
| 40 | 39 | adantl 277 | 
. . . . . 6
 | 
| 41 | 1re 8025 | 
. . . . . . 7
 | |
| 42 | lemul2a 8886 | 
. . . . . . 7
 | |
| 43 | 41, 42 | mp3anl1 1342 | 
. . . . . 6
 | 
| 44 | 33, 38, 40, 43 | syl21anc 1248 | 
. . . . 5
 | 
| 45 | 30, 44 | eqbrtrrd 4057 | 
. . . 4
 | 
| 46 | faccl 10827 | 
. . . . . . 7
 | |
| 47 | 22, 46 | syl 14 | 
. . . . . 6
 | 
| 48 | 47 | nnred 9003 | 
. . . . 5
 | 
| 49 | 34 | adantr 276 | 
. . . . 5
 | 
| 50 | remulcl 8007 | 
. . . . . 6
 | |
| 51 | 34, 32, 50 | syl2an 289 | 
. . . . 5
 | 
| 52 | letr 8109 | 
. . . . 5
 | |
| 53 | 48, 49, 51, 52 | syl3anc 1249 | 
. . . 4
 | 
| 54 | 45, 53 | mpan2d 428 | 
. . 3
 | 
| 55 | 16, 26, 54 | 3syld 57 | 
. 2
 | 
| 56 | nn0re 9258 | 
. . . . . 6
 | |
| 57 | 56 | adantl 277 | 
. . . . 5
 | 
| 58 | letr 8109 | 
. . . . 5
 | |
| 59 | 9, 11, 57, 58 | syl3anc 1249 | 
. . . 4
 | 
| 60 | 7, 59 | mpand 429 | 
. . 3
 | 
| 61 | simpr 110 | 
. . . 4
 | |
| 62 | facwordi 10832 | 
. . . . 5
 | |
| 63 | 62 | 3exp 1204 | 
. . . 4
 | 
| 64 | 22, 61, 63 | sylc 62 | 
. . 3
 | 
| 65 | 31 | nncnd 9004 | 
. . . . . . 7
 | 
| 66 | 65 | mulid2d 8045 | 
. . . . . 6
 | 
| 67 | 66 | adantl 277 | 
. . . . 5
 | 
| 68 | 31 | nnnn0d 9302 | 
. . . . . . . . 9
 | 
| 69 | 68 | nn0ge0d 9305 | 
. . . . . . . 8
 | 
| 70 | 32, 69 | jca 306 | 
. . . . . . 7
 | 
| 71 | 70 | adantl 277 | 
. . . . . 6
 | 
| 72 | 27 | nnge1d 9033 | 
. . . . . . 7
 | 
| 73 | 72 | adantr 276 | 
. . . . . 6
 | 
| 74 | lemul1a 8885 | 
. . . . . . 7
 | |
| 75 | 41, 74 | mp3anl1 1342 | 
. . . . . 6
 | 
| 76 | 49, 71, 73, 75 | syl21anc 1248 | 
. . . . 5
 | 
| 77 | 67, 76 | eqbrtrrd 4057 | 
. . . 4
 | 
| 78 | letr 8109 | 
. . . . 5
 | |
| 79 | 48, 33, 51, 78 | syl3anc 1249 | 
. . . 4
 | 
| 80 | 77, 79 | mpan2d 428 | 
. . 3
 | 
| 81 | 60, 64, 80 | 3syld 57 | 
. 2
 | 
| 82 | 23 | nn0zd 9446 | 
. . . 4
 | 
| 83 | zq 9700 | 
. . . 4
 | |
| 84 | 82, 83 | syl 14 | 
. . 3
 | 
| 85 | 61 | nn0zd 9446 | 
. . . 4
 | 
| 86 | zq 9700 | 
. . . 4
 | |
| 87 | 85, 86 | syl 14 | 
. . 3
 | 
| 88 | qavgle 10348 | 
. . 3
 | |
| 89 | 84, 87, 88 | syl2anc 411 | 
. 2
 | 
| 90 | 55, 81, 89 | mpjaod 719 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fl 10360 df-seqfrec 10540 df-fac 10818 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |