| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > facavg | Unicode version | ||
| Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.) |
| Ref | Expression |
|---|---|
| facavg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0addcl 9365 |
. . . . . . 7
| |
| 2 | 1 | nn0zd 9528 |
. . . . . 6
|
| 3 | 2nn 9233 |
. . . . . 6
| |
| 4 | znq 9780 |
. . . . . 6
| |
| 5 | 2, 3, 4 | sylancl 413 |
. . . . 5
|
| 6 | flqle 10458 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | 5 | flqcld 10457 |
. . . . . 6
|
| 9 | 8 | zred 9530 |
. . . . 5
|
| 10 | nn0readdcl 9389 |
. . . . . 6
| |
| 11 | 10 | rehalfcld 9319 |
. . . . 5
|
| 12 | nn0re 9339 |
. . . . . 6
| |
| 13 | 12 | adantr 276 |
. . . . 5
|
| 14 | letr 8190 |
. . . . 5
| |
| 15 | 9, 11, 13, 14 | syl3anc 1250 |
. . . 4
|
| 16 | 7, 15 | mpand 429 |
. . 3
|
| 17 | 1 | nn0ge0d 9386 |
. . . . . 6
|
| 18 | halfnneg2 9304 |
. . . . . . 7
| |
| 19 | 10, 18 | syl 14 |
. . . . . 6
|
| 20 | 17, 19 | mpbid 147 |
. . . . 5
|
| 21 | flqge0nn0 10473 |
. . . . 5
| |
| 22 | 5, 20, 21 | syl2anc 411 |
. . . 4
|
| 23 | simpl 109 |
. . . 4
| |
| 24 | facwordi 10922 |
. . . . 5
| |
| 25 | 24 | 3exp 1205 |
. . . 4
|
| 26 | 22, 23, 25 | sylc 62 |
. . 3
|
| 27 | faccl 10917 |
. . . . . . . 8
| |
| 28 | 27 | nncnd 9085 |
. . . . . . 7
|
| 29 | 28 | mulridd 8124 |
. . . . . 6
|
| 30 | 29 | adantr 276 |
. . . . 5
|
| 31 | faccl 10917 |
. . . . . . . 8
| |
| 32 | 31 | nnred 9084 |
. . . . . . 7
|
| 33 | 32 | adantl 277 |
. . . . . 6
|
| 34 | 27 | nnred 9084 |
. . . . . . . 8
|
| 35 | 27 | nnnn0d 9383 |
. . . . . . . . 9
|
| 36 | 35 | nn0ge0d 9386 |
. . . . . . . 8
|
| 37 | 34, 36 | jca 306 |
. . . . . . 7
|
| 38 | 37 | adantr 276 |
. . . . . 6
|
| 39 | 31 | nnge1d 9114 |
. . . . . . 7
|
| 40 | 39 | adantl 277 |
. . . . . 6
|
| 41 | 1re 8106 |
. . . . . . 7
| |
| 42 | lemul2a 8967 |
. . . . . . 7
| |
| 43 | 41, 42 | mp3anl1 1344 |
. . . . . 6
|
| 44 | 33, 38, 40, 43 | syl21anc 1249 |
. . . . 5
|
| 45 | 30, 44 | eqbrtrrd 4083 |
. . . 4
|
| 46 | faccl 10917 |
. . . . . . 7
| |
| 47 | 22, 46 | syl 14 |
. . . . . 6
|
| 48 | 47 | nnred 9084 |
. . . . 5
|
| 49 | 34 | adantr 276 |
. . . . 5
|
| 50 | remulcl 8088 |
. . . . . 6
| |
| 51 | 34, 32, 50 | syl2an 289 |
. . . . 5
|
| 52 | letr 8190 |
. . . . 5
| |
| 53 | 48, 49, 51, 52 | syl3anc 1250 |
. . . 4
|
| 54 | 45, 53 | mpan2d 428 |
. . 3
|
| 55 | 16, 26, 54 | 3syld 57 |
. 2
|
| 56 | nn0re 9339 |
. . . . . 6
| |
| 57 | 56 | adantl 277 |
. . . . 5
|
| 58 | letr 8190 |
. . . . 5
| |
| 59 | 9, 11, 57, 58 | syl3anc 1250 |
. . . 4
|
| 60 | 7, 59 | mpand 429 |
. . 3
|
| 61 | simpr 110 |
. . . 4
| |
| 62 | facwordi 10922 |
. . . . 5
| |
| 63 | 62 | 3exp 1205 |
. . . 4
|
| 64 | 22, 61, 63 | sylc 62 |
. . 3
|
| 65 | 31 | nncnd 9085 |
. . . . . . 7
|
| 66 | 65 | mulid2d 8126 |
. . . . . 6
|
| 67 | 66 | adantl 277 |
. . . . 5
|
| 68 | 31 | nnnn0d 9383 |
. . . . . . . . 9
|
| 69 | 68 | nn0ge0d 9386 |
. . . . . . . 8
|
| 70 | 32, 69 | jca 306 |
. . . . . . 7
|
| 71 | 70 | adantl 277 |
. . . . . 6
|
| 72 | 27 | nnge1d 9114 |
. . . . . . 7
|
| 73 | 72 | adantr 276 |
. . . . . 6
|
| 74 | lemul1a 8966 |
. . . . . . 7
| |
| 75 | 41, 74 | mp3anl1 1344 |
. . . . . 6
|
| 76 | 49, 71, 73, 75 | syl21anc 1249 |
. . . . 5
|
| 77 | 67, 76 | eqbrtrrd 4083 |
. . . 4
|
| 78 | letr 8190 |
. . . . 5
| |
| 79 | 48, 33, 51, 78 | syl3anc 1250 |
. . . 4
|
| 80 | 77, 79 | mpan2d 428 |
. . 3
|
| 81 | 60, 64, 80 | 3syld 57 |
. 2
|
| 82 | 23 | nn0zd 9528 |
. . . 4
|
| 83 | zq 9782 |
. . . 4
| |
| 84 | 82, 83 | syl 14 |
. . 3
|
| 85 | 61 | nn0zd 9528 |
. . . 4
|
| 86 | zq 9782 |
. . . 4
| |
| 87 | 85, 86 | syl 14 |
. . 3
|
| 88 | qavgle 10438 |
. . 3
| |
| 89 | 84, 87, 88 | syl2anc 411 |
. 2
|
| 90 | 55, 81, 89 | mpjaod 720 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fl 10450 df-seqfrec 10630 df-fac 10908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |