ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facavg Unicode version

Theorem facavg 10460
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facavg  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) )

Proof of Theorem facavg
StepHypRef Expression
1 nn0addcl 8980 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )
21nn0zd 9139 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  ZZ )
3 2nn 8849 . . . . . 6  |-  2  e.  NN
4 znq 9384 . . . . . 6  |-  ( ( ( M  +  N
)  e.  ZZ  /\  2  e.  NN )  ->  ( ( M  +  N )  /  2
)  e.  QQ )
52, 3, 4sylancl 409 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  +  N )  /  2
)  e.  QQ )
6 flqle 10019 . . . . 5  |-  ( ( ( M  +  N
)  /  2 )  e.  QQ  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
) )
75, 6syl 14 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  <_  ( ( M  +  N )  /  2 ) )
85flqcld 10018 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  ZZ )
98zred 9141 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR )
10 nn0readdcl 9004 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  RR )
1110rehalfcld 8934 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  +  N )  /  2
)  e.  RR )
12 nn0re 8954 . . . . . 6  |-  ( M  e.  NN0  ->  M  e.  RR )
1312adantr 274 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  RR )
14 letr 7815 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR  /\  ( ( M  +  N )  /  2
)  e.  RR  /\  M  e.  RR )  ->  ( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  M )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M ) )
159, 11, 13, 14syl3anc 1201 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  M )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M ) )
167, 15mpand 425 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  ->  ( |_ `  (
( M  +  N
)  /  2 ) )  <_  M )
)
171nn0ge0d 9001 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  ( M  +  N ) )
18 halfnneg2 8920 . . . . . . 7  |-  ( ( M  +  N )  e.  RR  ->  (
0  <_  ( M  +  N )  <->  0  <_  ( ( M  +  N
)  /  2 ) ) )
1910, 18syl 14 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <_  ( M  +  N )  <->  0  <_  ( ( M  +  N )  / 
2 ) ) )
2017, 19mpbid 146 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  ( ( M  +  N )  /  2 ) )
21 flqge0nn0 10034 . . . . 5  |-  ( ( ( ( M  +  N )  /  2
)  e.  QQ  /\  0  <_  ( ( M  +  N )  / 
2 ) )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0 )
225, 20, 21syl2anc 408 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0 )
23 simpl 108 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
24 facwordi 10454 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0  /\  M  e.  NN0  /\  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  M )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
) )
25243exp 1165 . . . 4  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( M  e.  NN0  ->  ( ( |_ `  ( ( M  +  N )  /  2 ) )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
) ) ) )
2622, 23, 25sylc 62 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( |_ `  ( ( M  +  N )  /  2
) )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ! `  M ) ) )
27 faccl 10449 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
2827nncnd 8702 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  CC )
2928mulid1d 7751 . . . . . 6  |-  ( M  e.  NN0  ->  ( ( ! `  M )  x.  1 )  =  ( ! `  M
) )
3029adantr 274 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  1 )  =  ( ! `
 M ) )
31 faccl 10449 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3231nnred 8701 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
3332adantl 275 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  N
)  e.  RR )
3427nnred 8701 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  RR )
3527nnnn0d 8998 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( ! `
 M )  e. 
NN0 )
3635nn0ge0d 9001 . . . . . . . 8  |-  ( M  e.  NN0  ->  0  <_ 
( ! `  M
) )
3734, 36jca 304 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M
) ) )
3837adantr 274 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )
3931nnge1d 8731 . . . . . . 7  |-  ( N  e.  NN0  ->  1  <_ 
( ! `  N
) )
4039adantl 275 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
1  <_  ( ! `  N ) )
41 1re 7733 . . . . . . 7  |-  1  e.  RR
42 lemul2a 8585 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  ( ! `  N
)  e.  RR  /\  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )  /\  1  <_  ( ! `  N )
)  ->  ( ( ! `  M )  x.  1 )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )
4341, 42mp3anl1 1294 . . . . . 6  |-  ( ( ( ( ! `  N )  e.  RR  /\  ( ( ! `  M )  e.  RR  /\  0  <_  ( ! `  M ) ) )  /\  1  <_  ( ! `  N )
)  ->  ( ( ! `  M )  x.  1 )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )
4433, 38, 40, 43syl21anc 1200 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  1 )  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
4530, 44eqbrtrrd 3922 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  M
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
46 faccl 10449 . . . . . . 7  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  e.  NN )
4722, 46syl 14 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  NN )
4847nnred 8701 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR )
4934adantr 274 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  M
)  e.  RR )
50 remulcl 7716 . . . . . 6  |-  ( ( ( ! `  M
)  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( ( ! `  M )  x.  ( ! `  N )
)  e.  RR )
5134, 32, 50syl2an 287 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  M )  x.  ( ! `  N )
)  e.  RR )
52 letr 7815 . . . . 5  |-  ( ( ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR  /\  ( ! `  M )  e.  RR  /\  ( ( ! `  M )  x.  ( ! `  N ) )  e.  RR )  ->  (
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  M )  /\  ( ! `  M )  <_  ( ( ! `  M )  x.  ( ! `  N )
) )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
5348, 49, 51, 52syl3anc 1201 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  M
)  /\  ( ! `  M )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )  ->  ( ! `  ( |_ `  (
( M  +  N
)  /  2 ) ) )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) ) )
5445, 53mpan2d 424 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  M )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
5516, 26, 543syld 57 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) ) )
56 nn0re 8954 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
5756adantl 275 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
58 letr 7815 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  RR  /\  ( ( M  +  N )  /  2
)  e.  RR  /\  N  e.  RR )  ->  ( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  N )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N ) )
599, 11, 57, 58syl3anc 1201 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( |_
`  ( ( M  +  N )  / 
2 ) )  <_ 
( ( M  +  N )  /  2
)  /\  ( ( M  +  N )  /  2 )  <_  N )  ->  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N ) )
607, 59mpand 425 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  N  ->  ( |_ `  (
( M  +  N
)  /  2 ) )  <_  N )
)
61 simpr 109 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  NN0 )
62 facwordi 10454 . . . . 5  |-  ( ( ( |_ `  (
( M  +  N
)  /  2 ) )  e.  NN0  /\  N  e.  NN0  /\  ( |_ `  ( ( M  +  N )  / 
2 ) )  <_  N )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
) )
63623exp 1165 . . . 4  |-  ( ( |_ `  ( ( M  +  N )  /  2 ) )  e.  NN0  ->  ( N  e.  NN0  ->  ( ( |_ `  ( ( M  +  N )  /  2 ) )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
) ) ) )
6422, 61, 63sylc 62 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( |_ `  ( ( M  +  N )  /  2
) )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ! `  N ) ) )
6531nncnd 8702 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
6665mulid2d 7752 . . . . . 6  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  =  ( ! `  N
) )
6766adantl 275 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  x.  ( ! `  N )
)  =  ( ! `
 N ) )
6831nnnn0d 8998 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ! `
 N )  e. 
NN0 )
6968nn0ge0d 9001 . . . . . . . 8  |-  ( N  e.  NN0  ->  0  <_ 
( ! `  N
) )
7032, 69jca 304 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N
) ) )
7170adantl 275 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )
7227nnge1d 8731 . . . . . . 7  |-  ( M  e.  NN0  ->  1  <_ 
( ! `  M
) )
7372adantr 274 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
1  <_  ( ! `  M ) )
74 lemul1a 8584 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  ( ! `  M
)  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )  /\  1  <_  ( ! `  M )
)  ->  ( 1  x.  ( ! `  N ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) )
7541, 74mp3anl1 1294 . . . . . 6  |-  ( ( ( ( ! `  M )  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <_  ( ! `  N ) ) )  /\  1  <_  ( ! `  M )
)  ->  ( 1  x.  ( ! `  N ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) )
7649, 71, 73, 75syl21anc 1200 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  x.  ( ! `  N )
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
7767, 76eqbrtrrd 3922 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  N
)  <_  ( ( ! `  M )  x.  ( ! `  N
) ) )
78 letr 7815 . . . . 5  |-  ( ( ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  e.  RR  /\  ( ! `  N )  e.  RR  /\  ( ( ! `  M )  x.  ( ! `  N ) )  e.  RR )  ->  (
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  N )  /\  ( ! `  N )  <_  ( ( ! `  M )  x.  ( ! `  N )
) )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
7948, 33, 51, 78syl3anc 1201 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( ! `
 ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ! `  N
)  /\  ( ! `  N )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) )  ->  ( ! `  ( |_ `  (
( M  +  N
)  /  2 ) ) )  <_  (
( ! `  M
)  x.  ( ! `
 N ) ) ) )
8077, 79mpan2d 424 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ! `  ( |_ `  ( ( M  +  N )  /  2 ) ) )  <_  ( ! `  N )  ->  ( ! `  ( |_ `  ( ( M  +  N )  /  2
) ) )  <_ 
( ( ! `  M )  x.  ( ! `  N )
) ) )
8160, 64, 803syld 57 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  N  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) ) )
8223nn0zd 9139 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
83 zq 9386 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  QQ )
8482, 83syl 14 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  QQ )
8561nn0zd 9139 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
86 zq 9386 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  QQ )
8785, 86syl 14 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  QQ )
88 qavgle 10004 . . 3  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( ( ( M  +  N )  / 
2 )  <_  M  \/  ( ( M  +  N )  /  2
)  <_  N )
)
8984, 87, 88syl2anc 408 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  +  N )  / 
2 )  <_  M  \/  ( ( M  +  N )  /  2
)  <_  N )
)
9055, 81, 89mpjaod 692 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ! `  ( |_ `  ( ( M  +  N )  / 
2 ) ) )  <_  ( ( ! `
 M )  x.  ( ! `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 682    = wceq 1316    e. wcel 1465   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   RRcr 7587   0cc0 7588   1c1 7589    + caddc 7591    x. cmul 7593    <_ cle 7769    / cdiv 8400   NNcn 8688   2c2 8739   NN0cn0 8945   ZZcz 9022   QQcq 9379   |_cfl 10009   !cfa 10439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-rp 9410  df-fl 10011  df-seqfrec 10187  df-fac 10440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator