Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > msqge0 | Unicode version |
Description: A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
msqge0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remulcl 7914 | . . . . 5 | |
2 | 1 | anidms 397 | . . . 4 |
3 | 0re 7932 | . . . 4 | |
4 | ltnsym2 8022 | . . . 4 | |
5 | 2, 3, 4 | sylancl 413 | . . 3 |
6 | orc 712 | . . . . . 6 | |
7 | reaplt 8519 | . . . . . . 7 # | |
8 | 2, 3, 7 | sylancl 413 | . . . . . 6 # |
9 | 6, 8 | syl5ibr 156 | . . . . 5 # |
10 | recn 7919 | . . . . . . . . 9 | |
11 | mulap0r 8546 | . . . . . . . . . 10 # # # | |
12 | 10, 11 | syl3an1 1271 | . . . . . . . . 9 # # # |
13 | 10, 12 | syl3an2 1272 | . . . . . . . 8 # # # |
14 | 13 | simpld 112 | . . . . . . 7 # # |
15 | 14 | 3expia 1205 | . . . . . 6 # # |
16 | 15 | anidms 397 | . . . . 5 # # |
17 | apsqgt0 8532 | . . . . . 6 # | |
18 | 17 | ex 115 | . . . . 5 # |
19 | 9, 16, 18 | 3syld 57 | . . . 4 |
20 | 19 | ancld 325 | . . 3 |
21 | 5, 20 | mtod 663 | . 2 |
22 | lenlt 8007 | . . 3 | |
23 | 3, 2, 22 | sylancr 414 | . 2 |
24 | 21, 23 | mpbird 167 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 w3a 978 wcel 2146 class class class wbr 3998 (class class class)co 5865 cc 7784 cr 7785 cc0 7786 cmul 7791 clt 7966 cle 7967 # cap 8512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 |
This theorem is referenced by: msqge0i 8548 msqge0d 8549 recexaplem2 8582 sqge0 10564 bernneq 10608 |
Copyright terms: Public domain | W3C validator |