ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cju Unicode version

Theorem cju 8683
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cju  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
Distinct variable group:    x, A

Proof of Theorem cju
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7730 . . 3  |-  ( A  e.  CC  ->  E. y  e.  RR  E. z  e.  RR  A  =  ( y  +  ( _i  x.  z ) ) )
2 recn 7721 . . . . . . 7  |-  ( y  e.  RR  ->  y  e.  CC )
3 ax-icn 7683 . . . . . . . 8  |-  _i  e.  CC
4 recn 7721 . . . . . . . 8  |-  ( z  e.  RR  ->  z  e.  CC )
5 mulcl 7715 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  z  e.  CC )  ->  ( _i  x.  z
)  e.  CC )
63, 4, 5sylancr 410 . . . . . . 7  |-  ( z  e.  RR  ->  (
_i  x.  z )  e.  CC )
7 subcl 7929 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( _i  x.  z
)  e.  CC )  ->  ( y  -  ( _i  x.  z
) )  e.  CC )
82, 6, 7syl2an 287 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  -  (
_i  x.  z )
)  e.  CC )
92adantr 274 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  y  e.  CC )
106adantl 275 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  z
)  e.  CC )
119, 10, 9ppncand 8081 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  +  ( y  -  ( _i  x.  z ) ) )  =  ( y  +  y ) )
12 readdcl 7714 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  y  e.  RR )  ->  ( y  +  y )  e.  RR )
1312anidms 394 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  y )  e.  RR )
1413adantr 274 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  +  y )  e.  RR )
1511, 14eqeltrd 2194 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  +  ( y  -  ( _i  x.  z ) ) )  e.  RR )
169, 10, 10pnncand 8080 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) )  =  ( ( _i  x.  z )  +  ( _i  x.  z ) ) )
173a1i 9 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  _i  e.  CC )
184adantl 275 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  z  e.  CC )
1917, 18, 18adddid 7758 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
z  +  z ) )  =  ( ( _i  x.  z )  +  ( _i  x.  z ) ) )
2016, 19eqtr4d 2153 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) )  =  ( _i  x.  ( z  +  z ) ) )
2120oveq2d 5758 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
2218, 18addcld 7753 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( z  +  z )  e.  CC )
23 mulass 7719 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
z  +  z )  e.  CC )  -> 
( ( _i  x.  _i )  x.  (
z  +  z ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
243, 3, 23mp3an12 1290 . . . . . . . . 9  |-  ( ( z  +  z )  e.  CC  ->  (
( _i  x.  _i )  x.  ( z  +  z ) )  =  ( _i  x.  ( _i  x.  (
z  +  z ) ) ) )
2522, 24syl 14 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( _i  x.  _i )  x.  (
z  +  z ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
2621, 25eqtr4d 2153 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  =  ( ( _i  x.  _i )  x.  ( z  +  z ) ) )
27 ixi 8312 . . . . . . . . 9  |-  ( _i  x.  _i )  = 
-u 1
28 1re 7733 . . . . . . . . . 10  |-  1  e.  RR
2928renegcli 7992 . . . . . . . . 9  |-  -u 1  e.  RR
3027, 29eqeltri 2190 . . . . . . . 8  |-  ( _i  x.  _i )  e.  RR
31 simpr 109 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  z  e.  RR )
3231, 31readdcld 7763 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( z  +  z )  e.  RR )
33 remulcl 7716 . . . . . . . 8  |-  ( ( ( _i  x.  _i )  e.  RR  /\  (
z  +  z )  e.  RR )  -> 
( ( _i  x.  _i )  x.  (
z  +  z ) )  e.  RR )
3430, 32, 33sylancr 410 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( _i  x.  _i )  x.  (
z  +  z ) )  e.  RR )
3526, 34eqeltrd 2194 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR )
36 oveq2 5750 . . . . . . . . 9  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( y  +  ( _i  x.  z ) )  +  x )  =  ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) ) )
3736eleq1d 2186 . . . . . . . 8  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( ( y  +  ( _i  x.  z
) )  +  x
)  e.  RR  <->  ( (
y  +  ( _i  x.  z ) )  +  ( y  -  ( _i  x.  z
) ) )  e.  RR ) )
38 oveq2 5750 . . . . . . . . . 10  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( y  +  ( _i  x.  z ) )  -  x )  =  ( ( y  +  ( _i  x.  z ) )  -  ( y  -  (
_i  x.  z )
) ) )
3938oveq2d 5758 . . . . . . . . 9  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
_i  x.  ( (
y  +  ( _i  x.  z ) )  -  x ) )  =  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) ) ) )
4039eleq1d 2186 . . . . . . . 8  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR  <->  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) ) )  e.  RR ) )
4137, 40anbi12d 464 . . . . . . 7  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR )  <-> 
( ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR ) ) )
4241rspcev 2763 . . . . . 6  |-  ( ( ( y  -  (
_i  x.  z )
)  e.  CC  /\  ( ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR ) )  ->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  ( ( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) )
438, 15, 35, 42syl12anc 1199 . . . . 5  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) )
44 oveq1 5749 . . . . . . . 8  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( A  +  x )  =  ( ( y  +  ( _i  x.  z ) )  +  x ) )
4544eleq1d 2186 . . . . . . 7  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( A  +  x
)  e.  RR  <->  ( (
y  +  ( _i  x.  z ) )  +  x )  e.  RR ) )
46 oveq1 5749 . . . . . . . . 9  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( A  -  x )  =  ( ( y  +  ( _i  x.  z ) )  -  x ) )
4746oveq2d 5758 . . . . . . . 8  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) ) )
4847eleq1d 2186 . . . . . . 7  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  x
) )  e.  RR ) )
4945, 48anbi12d 464 . . . . . 6  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) ) )
5049rexbidv 2415 . . . . 5  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) ) )
5143, 50syl5ibrcom 156 . . . 4  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( A  =  ( y  +  ( _i  x.  z ) )  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) ) )
5251rexlimivv 2532 . . 3  |-  ( E. y  e.  RR  E. z  e.  RR  A  =  ( y  +  ( _i  x.  z
) )  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )
531, 52syl 14 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )
54 an4 560 . . . 4  |-  ( ( ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  <->  ( (
( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) ) )
55 resubcl 7994 . . . . . . 7  |-  ( ( ( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  ->  ( ( A  +  x )  -  ( A  +  y
) )  e.  RR )
56 pnpcan 7969 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( A  +  x
)  -  ( A  +  y ) )  =  ( x  -  y ) )
57563expb 1167 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( ( A  +  x )  -  ( A  +  y ) )  =  ( x  -  y
) )
5857eleq1d 2186 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( A  +  x
)  -  ( A  +  y ) )  e.  RR  <->  ( x  -  y )  e.  RR ) )
5955, 58syl5ib 153 . . . . . 6  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  ->  ( x  -  y )  e.  RR ) )
60 resubcl 7994 . . . . . . . 8  |-  ( ( ( _i  x.  ( A  -  y )
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  ->  ( ( _i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x )
) )  e.  RR )
6160ancoms 266 . . . . . . 7  |-  ( ( ( _i  x.  ( A  -  x )
)  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR )  ->  ( ( _i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x )
) )  e.  RR )
623a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  _i  e.  CC )
63 subcl 7929 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  -  y
)  e.  CC )
6463adantrl 469 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( A  -  y )  e.  CC )
65 subcl 7929 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  -  x
)  e.  CC )
6665adantrr 470 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( A  -  x )  e.  CC )
6762, 64, 66subdid 8144 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( _i  x.  ( ( A  -  y )  -  ( A  -  x )
) )  =  ( ( _i  x.  ( A  -  y )
)  -  ( _i  x.  ( A  -  x ) ) ) )
68 nnncan1 7966 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  CC  /\  x  e.  CC )  ->  (
( A  -  y
)  -  ( A  -  x ) )  =  ( x  -  y ) )
69683com23 1172 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( A  -  y
)  -  ( A  -  x ) )  =  ( x  -  y ) )
70693expb 1167 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( ( A  -  y )  -  ( A  -  x ) )  =  ( x  -  y
) )
7170oveq2d 5758 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( _i  x.  ( ( A  -  y )  -  ( A  -  x )
) )  =  ( _i  x.  ( x  -  y ) ) )
7267, 71eqtr3d 2152 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
_i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x
) ) )  =  ( _i  x.  (
x  -  y ) ) )
7372eleq1d 2186 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( _i  x.  ( A  -  y )
)  -  ( _i  x.  ( A  -  x ) ) )  e.  RR  <->  ( _i  x.  ( x  -  y
) )  e.  RR ) )
7461, 73syl5ib 153 . . . . . 6  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( _i  x.  ( A  -  x )
)  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR )  ->  ( _i  x.  ( x  -  y
) )  e.  RR ) )
7559, 74anim12d 333 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( A  +  y )  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  -> 
( ( x  -  y )  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR ) ) )
76 rimul 8314 . . . . . 6  |-  ( ( ( x  -  y
)  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR )  ->  ( x  -  y )  =  0 )
7776a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( x  -  y
)  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR )  ->  ( x  -  y )  =  0 ) )
78 subeq0 7956 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  <-> 
x  =  y ) )
7978biimpd 143 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  ->  x  =  y ) )
8079adantl 275 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
x  -  y )  =  0  ->  x  =  y ) )
8175, 77, 803syld 57 . . . 4  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( A  +  y )  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
8254, 81syl5bi 151 . . 3  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
8382ralrimivva 2491 . 2  |-  ( A  e.  CC  ->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
84 oveq2 5750 . . . . 5  |-  ( x  =  y  ->  ( A  +  x )  =  ( A  +  y ) )
8584eleq1d 2186 . . . 4  |-  ( x  =  y  ->  (
( A  +  x
)  e.  RR  <->  ( A  +  y )  e.  RR ) )
86 oveq2 5750 . . . . . 6  |-  ( x  =  y  ->  ( A  -  x )  =  ( A  -  y ) )
8786oveq2d 5758 . . . . 5  |-  ( x  =  y  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  ( A  -  y )
) )
8887eleq1d 2186 . . . 4  |-  ( x  =  y  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( A  -  y
) )  e.  RR ) )
8985, 88anbi12d 464 . . 3  |-  ( x  =  y  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR ) ) )
9089reu4 2851 . 2  |-  ( E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR )  /\  A. x  e.  CC  A. y  e.  CC  ( ( ( ( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
) )
9153, 83, 90sylanbrc 413 1  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465   A.wral 2393   E.wrex 2394   E!wreu 2395  (class class class)co 5742   CCcc 7586   RRcr 7587   0cc0 7588   1c1 7589   _ici 7590    + caddc 7591    x. cmul 7593    - cmin 7901   -ucneg 7902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-ltxr 7773  df-sub 7903  df-neg 7904  df-reap 8304
This theorem is referenced by:  cjval  10572  cjth  10573  cjf  10574  remim  10587
  Copyright terms: Public domain W3C validator