Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cju | Unicode version |
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
cju |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 7895 | . . 3 | |
2 | recn 7886 | . . . . . . 7 | |
3 | ax-icn 7848 | . . . . . . . 8 | |
4 | recn 7886 | . . . . . . . 8 | |
5 | mulcl 7880 | . . . . . . . 8 | |
6 | 3, 4, 5 | sylancr 411 | . . . . . . 7 |
7 | subcl 8097 | . . . . . . 7 | |
8 | 2, 6, 7 | syl2an 287 | . . . . . 6 |
9 | 2 | adantr 274 | . . . . . . . 8 |
10 | 6 | adantl 275 | . . . . . . . 8 |
11 | 9, 10, 9 | ppncand 8249 | . . . . . . 7 |
12 | readdcl 7879 | . . . . . . . . 9 | |
13 | 12 | anidms 395 | . . . . . . . 8 |
14 | 13 | adantr 274 | . . . . . . 7 |
15 | 11, 14 | eqeltrd 2243 | . . . . . 6 |
16 | 9, 10, 10 | pnncand 8248 | . . . . . . . . . 10 |
17 | 3 | a1i 9 | . . . . . . . . . . 11 |
18 | 4 | adantl 275 | . . . . . . . . . . 11 |
19 | 17, 18, 18 | adddid 7923 | . . . . . . . . . 10 |
20 | 16, 19 | eqtr4d 2201 | . . . . . . . . 9 |
21 | 20 | oveq2d 5858 | . . . . . . . 8 |
22 | 18, 18 | addcld 7918 | . . . . . . . . 9 |
23 | mulass 7884 | . . . . . . . . . 10 | |
24 | 3, 3, 23 | mp3an12 1317 | . . . . . . . . 9 |
25 | 22, 24 | syl 14 | . . . . . . . 8 |
26 | 21, 25 | eqtr4d 2201 | . . . . . . 7 |
27 | ixi 8481 | . . . . . . . . 9 | |
28 | 1re 7898 | . . . . . . . . . 10 | |
29 | 28 | renegcli 8160 | . . . . . . . . 9 |
30 | 27, 29 | eqeltri 2239 | . . . . . . . 8 |
31 | simpr 109 | . . . . . . . . 9 | |
32 | 31, 31 | readdcld 7928 | . . . . . . . 8 |
33 | remulcl 7881 | . . . . . . . 8 | |
34 | 30, 32, 33 | sylancr 411 | . . . . . . 7 |
35 | 26, 34 | eqeltrd 2243 | . . . . . 6 |
36 | oveq2 5850 | . . . . . . . . 9 | |
37 | 36 | eleq1d 2235 | . . . . . . . 8 |
38 | oveq2 5850 | . . . . . . . . . 10 | |
39 | 38 | oveq2d 5858 | . . . . . . . . 9 |
40 | 39 | eleq1d 2235 | . . . . . . . 8 |
41 | 37, 40 | anbi12d 465 | . . . . . . 7 |
42 | 41 | rspcev 2830 | . . . . . 6 |
43 | 8, 15, 35, 42 | syl12anc 1226 | . . . . 5 |
44 | oveq1 5849 | . . . . . . . 8 | |
45 | 44 | eleq1d 2235 | . . . . . . 7 |
46 | oveq1 5849 | . . . . . . . . 9 | |
47 | 46 | oveq2d 5858 | . . . . . . . 8 |
48 | 47 | eleq1d 2235 | . . . . . . 7 |
49 | 45, 48 | anbi12d 465 | . . . . . 6 |
50 | 49 | rexbidv 2467 | . . . . 5 |
51 | 43, 50 | syl5ibrcom 156 | . . . 4 |
52 | 51 | rexlimivv 2589 | . . 3 |
53 | 1, 52 | syl 14 | . 2 |
54 | an4 576 | . . . 4 | |
55 | resubcl 8162 | . . . . . . 7 | |
56 | pnpcan 8137 | . . . . . . . . 9 | |
57 | 56 | 3expb 1194 | . . . . . . . 8 |
58 | 57 | eleq1d 2235 | . . . . . . 7 |
59 | 55, 58 | syl5ib 153 | . . . . . 6 |
60 | resubcl 8162 | . . . . . . . 8 | |
61 | 60 | ancoms 266 | . . . . . . 7 |
62 | 3 | a1i 9 | . . . . . . . . . 10 |
63 | subcl 8097 | . . . . . . . . . . 11 | |
64 | 63 | adantrl 470 | . . . . . . . . . 10 |
65 | subcl 8097 | . . . . . . . . . . 11 | |
66 | 65 | adantrr 471 | . . . . . . . . . 10 |
67 | 62, 64, 66 | subdid 8312 | . . . . . . . . 9 |
68 | nnncan1 8134 | . . . . . . . . . . . 12 | |
69 | 68 | 3com23 1199 | . . . . . . . . . . 11 |
70 | 69 | 3expb 1194 | . . . . . . . . . 10 |
71 | 70 | oveq2d 5858 | . . . . . . . . 9 |
72 | 67, 71 | eqtr3d 2200 | . . . . . . . 8 |
73 | 72 | eleq1d 2235 | . . . . . . 7 |
74 | 61, 73 | syl5ib 153 | . . . . . 6 |
75 | 59, 74 | anim12d 333 | . . . . 5 |
76 | rimul 8483 | . . . . . 6 | |
77 | 76 | a1i 9 | . . . . 5 |
78 | subeq0 8124 | . . . . . . 7 | |
79 | 78 | biimpd 143 | . . . . . 6 |
80 | 79 | adantl 275 | . . . . 5 |
81 | 75, 77, 80 | 3syld 57 | . . . 4 |
82 | 54, 81 | syl5bi 151 | . . 3 |
83 | 82 | ralrimivva 2548 | . 2 |
84 | oveq2 5850 | . . . . 5 | |
85 | 84 | eleq1d 2235 | . . . 4 |
86 | oveq2 5850 | . . . . . 6 | |
87 | 86 | oveq2d 5858 | . . . . 5 |
88 | 87 | eleq1d 2235 | . . . 4 |
89 | 85, 88 | anbi12d 465 | . . 3 |
90 | 89 | reu4 2920 | . 2 |
91 | 53, 83, 90 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 wrex 2445 wreu 2446 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 c1 7754 ci 7755 caddc 7756 cmul 7758 cmin 8069 cneg 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-sub 8071 df-neg 8072 df-reap 8473 |
This theorem is referenced by: cjval 10787 cjth 10788 cjf 10789 remim 10802 |
Copyright terms: Public domain | W3C validator |