| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cju | Unicode version | ||
| Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| cju |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8070 |
. . 3
| |
| 2 | recn 8060 |
. . . . . . 7
| |
| 3 | ax-icn 8022 |
. . . . . . . 8
| |
| 4 | recn 8060 |
. . . . . . . 8
| |
| 5 | mulcl 8054 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . . 7
|
| 7 | subcl 8273 |
. . . . . . 7
| |
| 8 | 2, 6, 7 | syl2an 289 |
. . . . . 6
|
| 9 | 2 | adantr 276 |
. . . . . . . 8
|
| 10 | 6 | adantl 277 |
. . . . . . . 8
|
| 11 | 9, 10, 9 | ppncand 8425 |
. . . . . . 7
|
| 12 | readdcl 8053 |
. . . . . . . . 9
| |
| 13 | 12 | anidms 397 |
. . . . . . . 8
|
| 14 | 13 | adantr 276 |
. . . . . . 7
|
| 15 | 11, 14 | eqeltrd 2282 |
. . . . . 6
|
| 16 | 9, 10, 10 | pnncand 8424 |
. . . . . . . . . 10
|
| 17 | 3 | a1i 9 |
. . . . . . . . . . 11
|
| 18 | 4 | adantl 277 |
. . . . . . . . . . 11
|
| 19 | 17, 18, 18 | adddid 8099 |
. . . . . . . . . 10
|
| 20 | 16, 19 | eqtr4d 2241 |
. . . . . . . . 9
|
| 21 | 20 | oveq2d 5962 |
. . . . . . . 8
|
| 22 | 18, 18 | addcld 8094 |
. . . . . . . . 9
|
| 23 | mulass 8058 |
. . . . . . . . . 10
| |
| 24 | 3, 3, 23 | mp3an12 1340 |
. . . . . . . . 9
|
| 25 | 22, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 21, 25 | eqtr4d 2241 |
. . . . . . 7
|
| 27 | ixi 8658 |
. . . . . . . . 9
| |
| 28 | 1re 8073 |
. . . . . . . . . 10
| |
| 29 | 28 | renegcli 8336 |
. . . . . . . . 9
|
| 30 | 27, 29 | eqeltri 2278 |
. . . . . . . 8
|
| 31 | simpr 110 |
. . . . . . . . 9
| |
| 32 | 31, 31 | readdcld 8104 |
. . . . . . . 8
|
| 33 | remulcl 8055 |
. . . . . . . 8
| |
| 34 | 30, 32, 33 | sylancr 414 |
. . . . . . 7
|
| 35 | 26, 34 | eqeltrd 2282 |
. . . . . 6
|
| 36 | oveq2 5954 |
. . . . . . . . 9
| |
| 37 | 36 | eleq1d 2274 |
. . . . . . . 8
|
| 38 | oveq2 5954 |
. . . . . . . . . 10
| |
| 39 | 38 | oveq2d 5962 |
. . . . . . . . 9
|
| 40 | 39 | eleq1d 2274 |
. . . . . . . 8
|
| 41 | 37, 40 | anbi12d 473 |
. . . . . . 7
|
| 42 | 41 | rspcev 2877 |
. . . . . 6
|
| 43 | 8, 15, 35, 42 | syl12anc 1248 |
. . . . 5
|
| 44 | oveq1 5953 |
. . . . . . . 8
| |
| 45 | 44 | eleq1d 2274 |
. . . . . . 7
|
| 46 | oveq1 5953 |
. . . . . . . . 9
| |
| 47 | 46 | oveq2d 5962 |
. . . . . . . 8
|
| 48 | 47 | eleq1d 2274 |
. . . . . . 7
|
| 49 | 45, 48 | anbi12d 473 |
. . . . . 6
|
| 50 | 49 | rexbidv 2507 |
. . . . 5
|
| 51 | 43, 50 | syl5ibrcom 157 |
. . . 4
|
| 52 | 51 | rexlimivv 2629 |
. . 3
|
| 53 | 1, 52 | syl 14 |
. 2
|
| 54 | an4 586 |
. . . 4
| |
| 55 | resubcl 8338 |
. . . . . . 7
| |
| 56 | pnpcan 8313 |
. . . . . . . . 9
| |
| 57 | 56 | 3expb 1207 |
. . . . . . . 8
|
| 58 | 57 | eleq1d 2274 |
. . . . . . 7
|
| 59 | 55, 58 | imbitrid 154 |
. . . . . 6
|
| 60 | resubcl 8338 |
. . . . . . . 8
| |
| 61 | 60 | ancoms 268 |
. . . . . . 7
|
| 62 | 3 | a1i 9 |
. . . . . . . . . 10
|
| 63 | subcl 8273 |
. . . . . . . . . . 11
| |
| 64 | 63 | adantrl 478 |
. . . . . . . . . 10
|
| 65 | subcl 8273 |
. . . . . . . . . . 11
| |
| 66 | 65 | adantrr 479 |
. . . . . . . . . 10
|
| 67 | 62, 64, 66 | subdid 8488 |
. . . . . . . . 9
|
| 68 | nnncan1 8310 |
. . . . . . . . . . . 12
| |
| 69 | 68 | 3com23 1212 |
. . . . . . . . . . 11
|
| 70 | 69 | 3expb 1207 |
. . . . . . . . . 10
|
| 71 | 70 | oveq2d 5962 |
. . . . . . . . 9
|
| 72 | 67, 71 | eqtr3d 2240 |
. . . . . . . 8
|
| 73 | 72 | eleq1d 2274 |
. . . . . . 7
|
| 74 | 61, 73 | imbitrid 154 |
. . . . . 6
|
| 75 | 59, 74 | anim12d 335 |
. . . . 5
|
| 76 | rimul 8660 |
. . . . . 6
| |
| 77 | 76 | a1i 9 |
. . . . 5
|
| 78 | subeq0 8300 |
. . . . . . 7
| |
| 79 | 78 | biimpd 144 |
. . . . . 6
|
| 80 | 79 | adantl 277 |
. . . . 5
|
| 81 | 75, 77, 80 | 3syld 57 |
. . . 4
|
| 82 | 54, 81 | biimtrid 152 |
. . 3
|
| 83 | 82 | ralrimivva 2588 |
. 2
|
| 84 | oveq2 5954 |
. . . . 5
| |
| 85 | 84 | eleq1d 2274 |
. . . 4
|
| 86 | oveq2 5954 |
. . . . . 6
| |
| 87 | 86 | oveq2d 5962 |
. . . . 5
|
| 88 | 87 | eleq1d 2274 |
. . . 4
|
| 89 | 85, 88 | anbi12d 473 |
. . 3
|
| 90 | 89 | reu4 2967 |
. 2
|
| 91 | 53, 83, 90 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-sub 8247 df-neg 8248 df-reap 8650 |
| This theorem is referenced by: cjval 11189 cjth 11190 cjf 11191 remim 11204 |
| Copyright terms: Public domain | W3C validator |