Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cju | Unicode version |
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
cju |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 7868 | . . 3 | |
2 | recn 7859 | . . . . . . 7 | |
3 | ax-icn 7821 | . . . . . . . 8 | |
4 | recn 7859 | . . . . . . . 8 | |
5 | mulcl 7853 | . . . . . . . 8 | |
6 | 3, 4, 5 | sylancr 411 | . . . . . . 7 |
7 | subcl 8068 | . . . . . . 7 | |
8 | 2, 6, 7 | syl2an 287 | . . . . . 6 |
9 | 2 | adantr 274 | . . . . . . . 8 |
10 | 6 | adantl 275 | . . . . . . . 8 |
11 | 9, 10, 9 | ppncand 8220 | . . . . . . 7 |
12 | readdcl 7852 | . . . . . . . . 9 | |
13 | 12 | anidms 395 | . . . . . . . 8 |
14 | 13 | adantr 274 | . . . . . . 7 |
15 | 11, 14 | eqeltrd 2234 | . . . . . 6 |
16 | 9, 10, 10 | pnncand 8219 | . . . . . . . . . 10 |
17 | 3 | a1i 9 | . . . . . . . . . . 11 |
18 | 4 | adantl 275 | . . . . . . . . . . 11 |
19 | 17, 18, 18 | adddid 7896 | . . . . . . . . . 10 |
20 | 16, 19 | eqtr4d 2193 | . . . . . . . . 9 |
21 | 20 | oveq2d 5837 | . . . . . . . 8 |
22 | 18, 18 | addcld 7891 | . . . . . . . . 9 |
23 | mulass 7857 | . . . . . . . . . 10 | |
24 | 3, 3, 23 | mp3an12 1309 | . . . . . . . . 9 |
25 | 22, 24 | syl 14 | . . . . . . . 8 |
26 | 21, 25 | eqtr4d 2193 | . . . . . . 7 |
27 | ixi 8452 | . . . . . . . . 9 | |
28 | 1re 7871 | . . . . . . . . . 10 | |
29 | 28 | renegcli 8131 | . . . . . . . . 9 |
30 | 27, 29 | eqeltri 2230 | . . . . . . . 8 |
31 | simpr 109 | . . . . . . . . 9 | |
32 | 31, 31 | readdcld 7901 | . . . . . . . 8 |
33 | remulcl 7854 | . . . . . . . 8 | |
34 | 30, 32, 33 | sylancr 411 | . . . . . . 7 |
35 | 26, 34 | eqeltrd 2234 | . . . . . 6 |
36 | oveq2 5829 | . . . . . . . . 9 | |
37 | 36 | eleq1d 2226 | . . . . . . . 8 |
38 | oveq2 5829 | . . . . . . . . . 10 | |
39 | 38 | oveq2d 5837 | . . . . . . . . 9 |
40 | 39 | eleq1d 2226 | . . . . . . . 8 |
41 | 37, 40 | anbi12d 465 | . . . . . . 7 |
42 | 41 | rspcev 2816 | . . . . . 6 |
43 | 8, 15, 35, 42 | syl12anc 1218 | . . . . 5 |
44 | oveq1 5828 | . . . . . . . 8 | |
45 | 44 | eleq1d 2226 | . . . . . . 7 |
46 | oveq1 5828 | . . . . . . . . 9 | |
47 | 46 | oveq2d 5837 | . . . . . . . 8 |
48 | 47 | eleq1d 2226 | . . . . . . 7 |
49 | 45, 48 | anbi12d 465 | . . . . . 6 |
50 | 49 | rexbidv 2458 | . . . . 5 |
51 | 43, 50 | syl5ibrcom 156 | . . . 4 |
52 | 51 | rexlimivv 2580 | . . 3 |
53 | 1, 52 | syl 14 | . 2 |
54 | an4 576 | . . . 4 | |
55 | resubcl 8133 | . . . . . . 7 | |
56 | pnpcan 8108 | . . . . . . . . 9 | |
57 | 56 | 3expb 1186 | . . . . . . . 8 |
58 | 57 | eleq1d 2226 | . . . . . . 7 |
59 | 55, 58 | syl5ib 153 | . . . . . 6 |
60 | resubcl 8133 | . . . . . . . 8 | |
61 | 60 | ancoms 266 | . . . . . . 7 |
62 | 3 | a1i 9 | . . . . . . . . . 10 |
63 | subcl 8068 | . . . . . . . . . . 11 | |
64 | 63 | adantrl 470 | . . . . . . . . . 10 |
65 | subcl 8068 | . . . . . . . . . . 11 | |
66 | 65 | adantrr 471 | . . . . . . . . . 10 |
67 | 62, 64, 66 | subdid 8283 | . . . . . . . . 9 |
68 | nnncan1 8105 | . . . . . . . . . . . 12 | |
69 | 68 | 3com23 1191 | . . . . . . . . . . 11 |
70 | 69 | 3expb 1186 | . . . . . . . . . 10 |
71 | 70 | oveq2d 5837 | . . . . . . . . 9 |
72 | 67, 71 | eqtr3d 2192 | . . . . . . . 8 |
73 | 72 | eleq1d 2226 | . . . . . . 7 |
74 | 61, 73 | syl5ib 153 | . . . . . 6 |
75 | 59, 74 | anim12d 333 | . . . . 5 |
76 | rimul 8454 | . . . . . 6 | |
77 | 76 | a1i 9 | . . . . 5 |
78 | subeq0 8095 | . . . . . . 7 | |
79 | 78 | biimpd 143 | . . . . . 6 |
80 | 79 | adantl 275 | . . . . 5 |
81 | 75, 77, 80 | 3syld 57 | . . . 4 |
82 | 54, 81 | syl5bi 151 | . . 3 |
83 | 82 | ralrimivva 2539 | . 2 |
84 | oveq2 5829 | . . . . 5 | |
85 | 84 | eleq1d 2226 | . . . 4 |
86 | oveq2 5829 | . . . . . 6 | |
87 | 86 | oveq2d 5837 | . . . . 5 |
88 | 87 | eleq1d 2226 | . . . 4 |
89 | 85, 88 | anbi12d 465 | . . 3 |
90 | 89 | reu4 2906 | . 2 |
91 | 53, 83, 90 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 wral 2435 wrex 2436 wreu 2437 (class class class)co 5821 cc 7724 cr 7725 cc0 7726 c1 7727 ci 7728 caddc 7729 cmul 7731 cmin 8040 cneg 8041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-ltxr 7911 df-sub 8042 df-neg 8043 df-reap 8444 |
This theorem is referenced by: cjval 10738 cjth 10739 cjf 10740 remim 10753 |
Copyright terms: Public domain | W3C validator |