| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cju | Unicode version | ||
| Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| cju |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8039 |
. . 3
| |
| 2 | recn 8029 |
. . . . . . 7
| |
| 3 | ax-icn 7991 |
. . . . . . . 8
| |
| 4 | recn 8029 |
. . . . . . . 8
| |
| 5 | mulcl 8023 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . . 7
|
| 7 | subcl 8242 |
. . . . . . 7
| |
| 8 | 2, 6, 7 | syl2an 289 |
. . . . . 6
|
| 9 | 2 | adantr 276 |
. . . . . . . 8
|
| 10 | 6 | adantl 277 |
. . . . . . . 8
|
| 11 | 9, 10, 9 | ppncand 8394 |
. . . . . . 7
|
| 12 | readdcl 8022 |
. . . . . . . . 9
| |
| 13 | 12 | anidms 397 |
. . . . . . . 8
|
| 14 | 13 | adantr 276 |
. . . . . . 7
|
| 15 | 11, 14 | eqeltrd 2273 |
. . . . . 6
|
| 16 | 9, 10, 10 | pnncand 8393 |
. . . . . . . . . 10
|
| 17 | 3 | a1i 9 |
. . . . . . . . . . 11
|
| 18 | 4 | adantl 277 |
. . . . . . . . . . 11
|
| 19 | 17, 18, 18 | adddid 8068 |
. . . . . . . . . 10
|
| 20 | 16, 19 | eqtr4d 2232 |
. . . . . . . . 9
|
| 21 | 20 | oveq2d 5941 |
. . . . . . . 8
|
| 22 | 18, 18 | addcld 8063 |
. . . . . . . . 9
|
| 23 | mulass 8027 |
. . . . . . . . . 10
| |
| 24 | 3, 3, 23 | mp3an12 1338 |
. . . . . . . . 9
|
| 25 | 22, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 21, 25 | eqtr4d 2232 |
. . . . . . 7
|
| 27 | ixi 8627 |
. . . . . . . . 9
| |
| 28 | 1re 8042 |
. . . . . . . . . 10
| |
| 29 | 28 | renegcli 8305 |
. . . . . . . . 9
|
| 30 | 27, 29 | eqeltri 2269 |
. . . . . . . 8
|
| 31 | simpr 110 |
. . . . . . . . 9
| |
| 32 | 31, 31 | readdcld 8073 |
. . . . . . . 8
|
| 33 | remulcl 8024 |
. . . . . . . 8
| |
| 34 | 30, 32, 33 | sylancr 414 |
. . . . . . 7
|
| 35 | 26, 34 | eqeltrd 2273 |
. . . . . 6
|
| 36 | oveq2 5933 |
. . . . . . . . 9
| |
| 37 | 36 | eleq1d 2265 |
. . . . . . . 8
|
| 38 | oveq2 5933 |
. . . . . . . . . 10
| |
| 39 | 38 | oveq2d 5941 |
. . . . . . . . 9
|
| 40 | 39 | eleq1d 2265 |
. . . . . . . 8
|
| 41 | 37, 40 | anbi12d 473 |
. . . . . . 7
|
| 42 | 41 | rspcev 2868 |
. . . . . 6
|
| 43 | 8, 15, 35, 42 | syl12anc 1247 |
. . . . 5
|
| 44 | oveq1 5932 |
. . . . . . . 8
| |
| 45 | 44 | eleq1d 2265 |
. . . . . . 7
|
| 46 | oveq1 5932 |
. . . . . . . . 9
| |
| 47 | 46 | oveq2d 5941 |
. . . . . . . 8
|
| 48 | 47 | eleq1d 2265 |
. . . . . . 7
|
| 49 | 45, 48 | anbi12d 473 |
. . . . . 6
|
| 50 | 49 | rexbidv 2498 |
. . . . 5
|
| 51 | 43, 50 | syl5ibrcom 157 |
. . . 4
|
| 52 | 51 | rexlimivv 2620 |
. . 3
|
| 53 | 1, 52 | syl 14 |
. 2
|
| 54 | an4 586 |
. . . 4
| |
| 55 | resubcl 8307 |
. . . . . . 7
| |
| 56 | pnpcan 8282 |
. . . . . . . . 9
| |
| 57 | 56 | 3expb 1206 |
. . . . . . . 8
|
| 58 | 57 | eleq1d 2265 |
. . . . . . 7
|
| 59 | 55, 58 | imbitrid 154 |
. . . . . 6
|
| 60 | resubcl 8307 |
. . . . . . . 8
| |
| 61 | 60 | ancoms 268 |
. . . . . . 7
|
| 62 | 3 | a1i 9 |
. . . . . . . . . 10
|
| 63 | subcl 8242 |
. . . . . . . . . . 11
| |
| 64 | 63 | adantrl 478 |
. . . . . . . . . 10
|
| 65 | subcl 8242 |
. . . . . . . . . . 11
| |
| 66 | 65 | adantrr 479 |
. . . . . . . . . 10
|
| 67 | 62, 64, 66 | subdid 8457 |
. . . . . . . . 9
|
| 68 | nnncan1 8279 |
. . . . . . . . . . . 12
| |
| 69 | 68 | 3com23 1211 |
. . . . . . . . . . 11
|
| 70 | 69 | 3expb 1206 |
. . . . . . . . . 10
|
| 71 | 70 | oveq2d 5941 |
. . . . . . . . 9
|
| 72 | 67, 71 | eqtr3d 2231 |
. . . . . . . 8
|
| 73 | 72 | eleq1d 2265 |
. . . . . . 7
|
| 74 | 61, 73 | imbitrid 154 |
. . . . . 6
|
| 75 | 59, 74 | anim12d 335 |
. . . . 5
|
| 76 | rimul 8629 |
. . . . . 6
| |
| 77 | 76 | a1i 9 |
. . . . 5
|
| 78 | subeq0 8269 |
. . . . . . 7
| |
| 79 | 78 | biimpd 144 |
. . . . . 6
|
| 80 | 79 | adantl 277 |
. . . . 5
|
| 81 | 75, 77, 80 | 3syld 57 |
. . . 4
|
| 82 | 54, 81 | biimtrid 152 |
. . 3
|
| 83 | 82 | ralrimivva 2579 |
. 2
|
| 84 | oveq2 5933 |
. . . . 5
| |
| 85 | 84 | eleq1d 2265 |
. . . 4
|
| 86 | oveq2 5933 |
. . . . . 6
| |
| 87 | 86 | oveq2d 5941 |
. . . . 5
|
| 88 | 87 | eleq1d 2265 |
. . . 4
|
| 89 | 85, 88 | anbi12d 473 |
. . 3
|
| 90 | 89 | reu4 2958 |
. 2
|
| 91 | 53, 83, 90 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-sub 8216 df-neg 8217 df-reap 8619 |
| This theorem is referenced by: cjval 11027 cjth 11028 cjf 11029 remim 11042 |
| Copyright terms: Public domain | W3C validator |