ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cju Unicode version

Theorem cju 8719
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cju  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
Distinct variable group:    x, A

Proof of Theorem cju
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7762 . . 3  |-  ( A  e.  CC  ->  E. y  e.  RR  E. z  e.  RR  A  =  ( y  +  ( _i  x.  z ) ) )
2 recn 7753 . . . . . . 7  |-  ( y  e.  RR  ->  y  e.  CC )
3 ax-icn 7715 . . . . . . . 8  |-  _i  e.  CC
4 recn 7753 . . . . . . . 8  |-  ( z  e.  RR  ->  z  e.  CC )
5 mulcl 7747 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  z  e.  CC )  ->  ( _i  x.  z
)  e.  CC )
63, 4, 5sylancr 410 . . . . . . 7  |-  ( z  e.  RR  ->  (
_i  x.  z )  e.  CC )
7 subcl 7961 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( _i  x.  z
)  e.  CC )  ->  ( y  -  ( _i  x.  z
) )  e.  CC )
82, 6, 7syl2an 287 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  -  (
_i  x.  z )
)  e.  CC )
92adantr 274 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  y  e.  CC )
106adantl 275 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  z
)  e.  CC )
119, 10, 9ppncand 8113 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  +  ( y  -  ( _i  x.  z ) ) )  =  ( y  +  y ) )
12 readdcl 7746 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  y  e.  RR )  ->  ( y  +  y )  e.  RR )
1312anidms 394 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  y )  e.  RR )
1413adantr 274 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  +  y )  e.  RR )
1511, 14eqeltrd 2216 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  +  ( y  -  ( _i  x.  z ) ) )  e.  RR )
169, 10, 10pnncand 8112 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) )  =  ( ( _i  x.  z )  +  ( _i  x.  z ) ) )
173a1i 9 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  _i  e.  CC )
184adantl 275 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  z  e.  CC )
1917, 18, 18adddid 7790 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
z  +  z ) )  =  ( ( _i  x.  z )  +  ( _i  x.  z ) ) )
2016, 19eqtr4d 2175 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) )  =  ( _i  x.  ( z  +  z ) ) )
2120oveq2d 5790 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
2218, 18addcld 7785 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( z  +  z )  e.  CC )
23 mulass 7751 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
z  +  z )  e.  CC )  -> 
( ( _i  x.  _i )  x.  (
z  +  z ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
243, 3, 23mp3an12 1305 . . . . . . . . 9  |-  ( ( z  +  z )  e.  CC  ->  (
( _i  x.  _i )  x.  ( z  +  z ) )  =  ( _i  x.  ( _i  x.  (
z  +  z ) ) ) )
2522, 24syl 14 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( _i  x.  _i )  x.  (
z  +  z ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
2621, 25eqtr4d 2175 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  =  ( ( _i  x.  _i )  x.  ( z  +  z ) ) )
27 ixi 8345 . . . . . . . . 9  |-  ( _i  x.  _i )  = 
-u 1
28 1re 7765 . . . . . . . . . 10  |-  1  e.  RR
2928renegcli 8024 . . . . . . . . 9  |-  -u 1  e.  RR
3027, 29eqeltri 2212 . . . . . . . 8  |-  ( _i  x.  _i )  e.  RR
31 simpr 109 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  z  e.  RR )
3231, 31readdcld 7795 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( z  +  z )  e.  RR )
33 remulcl 7748 . . . . . . . 8  |-  ( ( ( _i  x.  _i )  e.  RR  /\  (
z  +  z )  e.  RR )  -> 
( ( _i  x.  _i )  x.  (
z  +  z ) )  e.  RR )
3430, 32, 33sylancr 410 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( _i  x.  _i )  x.  (
z  +  z ) )  e.  RR )
3526, 34eqeltrd 2216 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR )
36 oveq2 5782 . . . . . . . . 9  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( y  +  ( _i  x.  z ) )  +  x )  =  ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) ) )
3736eleq1d 2208 . . . . . . . 8  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( ( y  +  ( _i  x.  z
) )  +  x
)  e.  RR  <->  ( (
y  +  ( _i  x.  z ) )  +  ( y  -  ( _i  x.  z
) ) )  e.  RR ) )
38 oveq2 5782 . . . . . . . . . 10  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( y  +  ( _i  x.  z ) )  -  x )  =  ( ( y  +  ( _i  x.  z ) )  -  ( y  -  (
_i  x.  z )
) ) )
3938oveq2d 5790 . . . . . . . . 9  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
_i  x.  ( (
y  +  ( _i  x.  z ) )  -  x ) )  =  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) ) ) )
4039eleq1d 2208 . . . . . . . 8  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR  <->  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) ) )  e.  RR ) )
4137, 40anbi12d 464 . . . . . . 7  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR )  <-> 
( ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR ) ) )
4241rspcev 2789 . . . . . 6  |-  ( ( ( y  -  (
_i  x.  z )
)  e.  CC  /\  ( ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR ) )  ->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  ( ( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) )
438, 15, 35, 42syl12anc 1214 . . . . 5  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) )
44 oveq1 5781 . . . . . . . 8  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( A  +  x )  =  ( ( y  +  ( _i  x.  z ) )  +  x ) )
4544eleq1d 2208 . . . . . . 7  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( A  +  x
)  e.  RR  <->  ( (
y  +  ( _i  x.  z ) )  +  x )  e.  RR ) )
46 oveq1 5781 . . . . . . . . 9  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( A  -  x )  =  ( ( y  +  ( _i  x.  z ) )  -  x ) )
4746oveq2d 5790 . . . . . . . 8  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) ) )
4847eleq1d 2208 . . . . . . 7  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  x
) )  e.  RR ) )
4945, 48anbi12d 464 . . . . . 6  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) ) )
5049rexbidv 2438 . . . . 5  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) ) )
5143, 50syl5ibrcom 156 . . . 4  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( A  =  ( y  +  ( _i  x.  z ) )  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) ) )
5251rexlimivv 2555 . . 3  |-  ( E. y  e.  RR  E. z  e.  RR  A  =  ( y  +  ( _i  x.  z
) )  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )
531, 52syl 14 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )
54 an4 575 . . . 4  |-  ( ( ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  <->  ( (
( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) ) )
55 resubcl 8026 . . . . . . 7  |-  ( ( ( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  ->  ( ( A  +  x )  -  ( A  +  y
) )  e.  RR )
56 pnpcan 8001 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( A  +  x
)  -  ( A  +  y ) )  =  ( x  -  y ) )
57563expb 1182 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( ( A  +  x )  -  ( A  +  y ) )  =  ( x  -  y
) )
5857eleq1d 2208 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( A  +  x
)  -  ( A  +  y ) )  e.  RR  <->  ( x  -  y )  e.  RR ) )
5955, 58syl5ib 153 . . . . . 6  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  ->  ( x  -  y )  e.  RR ) )
60 resubcl 8026 . . . . . . . 8  |-  ( ( ( _i  x.  ( A  -  y )
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  ->  ( ( _i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x )
) )  e.  RR )
6160ancoms 266 . . . . . . 7  |-  ( ( ( _i  x.  ( A  -  x )
)  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR )  ->  ( ( _i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x )
) )  e.  RR )
623a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  _i  e.  CC )
63 subcl 7961 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  -  y
)  e.  CC )
6463adantrl 469 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( A  -  y )  e.  CC )
65 subcl 7961 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  -  x
)  e.  CC )
6665adantrr 470 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( A  -  x )  e.  CC )
6762, 64, 66subdid 8176 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( _i  x.  ( ( A  -  y )  -  ( A  -  x )
) )  =  ( ( _i  x.  ( A  -  y )
)  -  ( _i  x.  ( A  -  x ) ) ) )
68 nnncan1 7998 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  CC  /\  x  e.  CC )  ->  (
( A  -  y
)  -  ( A  -  x ) )  =  ( x  -  y ) )
69683com23 1187 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( A  -  y
)  -  ( A  -  x ) )  =  ( x  -  y ) )
70693expb 1182 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( ( A  -  y )  -  ( A  -  x ) )  =  ( x  -  y
) )
7170oveq2d 5790 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( _i  x.  ( ( A  -  y )  -  ( A  -  x )
) )  =  ( _i  x.  ( x  -  y ) ) )
7267, 71eqtr3d 2174 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
_i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x
) ) )  =  ( _i  x.  (
x  -  y ) ) )
7372eleq1d 2208 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( _i  x.  ( A  -  y )
)  -  ( _i  x.  ( A  -  x ) ) )  e.  RR  <->  ( _i  x.  ( x  -  y
) )  e.  RR ) )
7461, 73syl5ib 153 . . . . . 6  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( _i  x.  ( A  -  x )
)  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR )  ->  ( _i  x.  ( x  -  y
) )  e.  RR ) )
7559, 74anim12d 333 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( A  +  y )  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  -> 
( ( x  -  y )  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR ) ) )
76 rimul 8347 . . . . . 6  |-  ( ( ( x  -  y
)  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR )  ->  ( x  -  y )  =  0 )
7776a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( x  -  y
)  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR )  ->  ( x  -  y )  =  0 ) )
78 subeq0 7988 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  <-> 
x  =  y ) )
7978biimpd 143 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  ->  x  =  y ) )
8079adantl 275 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
x  -  y )  =  0  ->  x  =  y ) )
8175, 77, 803syld 57 . . . 4  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( A  +  y )  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
8254, 81syl5bi 151 . . 3  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
8382ralrimivva 2514 . 2  |-  ( A  e.  CC  ->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
84 oveq2 5782 . . . . 5  |-  ( x  =  y  ->  ( A  +  x )  =  ( A  +  y ) )
8584eleq1d 2208 . . . 4  |-  ( x  =  y  ->  (
( A  +  x
)  e.  RR  <->  ( A  +  y )  e.  RR ) )
86 oveq2 5782 . . . . . 6  |-  ( x  =  y  ->  ( A  -  x )  =  ( A  -  y ) )
8786oveq2d 5790 . . . . 5  |-  ( x  =  y  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  ( A  -  y )
) )
8887eleq1d 2208 . . . 4  |-  ( x  =  y  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( A  -  y
) )  e.  RR ) )
8985, 88anbi12d 464 . . 3  |-  ( x  =  y  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR ) ) )
9089reu4 2878 . 2  |-  ( E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR )  /\  A. x  e.  CC  A. y  e.  CC  ( ( ( ( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
) )
9153, 83, 90sylanbrc 413 1  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   E!wreu 2418  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621   _ici 7622    + caddc 7623    x. cmul 7625    - cmin 7933   -ucneg 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936  df-reap 8337
This theorem is referenced by:  cjval  10617  cjth  10618  cjf  10619  remim  10632
  Copyright terms: Public domain W3C validator