ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjumkvlemres Unicode version

Theorem fodjumkvlemres 7123
Description: Lemma for fodjumkv 7124. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjumkv.o  |-  ( ph  ->  M  e. Markov )
fodjumkv.fo  |-  ( ph  ->  F : M -onto-> ( A B ) )
fodjumkv.p  |-  P  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
Assertion
Ref Expression
fodjumkvlemres  |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
)
Distinct variable groups:    ph, y, z   
y, M, z    z, A    z, B    z, F    x, A, z    y, A   
y, F    y, P, z
Allowed substitution hints:    ph( x)    B( x, y)    P( x)    F( x)    M( x)

Proof of Theorem fodjumkvlemres
Dummy variables  v  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjumkv.fo . . . . . 6  |-  ( ph  ->  F : M -onto-> ( A B ) )
21adantr 274 . . . . 5  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  F : M -onto-> ( A B ) )
3 fodjumkv.p . . . . 5  |-  P  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
4 simpr 109 . . . . 5  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  A. w  e.  M  ( P `  w )  =  1o )
52, 3, 4fodju0 7111 . . . 4  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  A  =  (/) )
65ex 114 . . 3  |-  ( ph  ->  ( A. w  e.  M  ( P `  w )  =  1o 
->  A  =  (/) ) )
76necon3ad 2378 . 2  |-  ( ph  ->  ( A  =/=  (/)  ->  -.  A. w  e.  M  ( P `  w )  =  1o ) )
8 fveq1 5485 . . . . . . 7  |-  ( f  =  P  ->  (
f `  w )  =  ( P `  w ) )
98eqeq1d 2174 . . . . . 6  |-  ( f  =  P  ->  (
( f `  w
)  =  1o  <->  ( P `  w )  =  1o ) )
109ralbidv 2466 . . . . 5  |-  ( f  =  P  ->  ( A. w  e.  M  ( f `  w
)  =  1o  <->  A. w  e.  M  ( P `  w )  =  1o ) )
1110notbid 657 . . . 4  |-  ( f  =  P  ->  ( -.  A. w  e.  M  ( f `  w
)  =  1o  <->  -.  A. w  e.  M  ( P `  w )  =  1o ) )
128eqeq1d 2174 . . . . 5  |-  ( f  =  P  ->  (
( f `  w
)  =  (/)  <->  ( P `  w )  =  (/) ) )
1312rexbidv 2467 . . . 4  |-  ( f  =  P  ->  ( E. w  e.  M  ( f `  w
)  =  (/)  <->  E. w  e.  M  ( P `  w )  =  (/) ) )
1411, 13imbi12d 233 . . 3  |-  ( f  =  P  ->  (
( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) )  <->  ( -.  A. w  e.  M  ( P `  w )  =  1o  ->  E. w  e.  M  ( P `  w )  =  (/) ) ) )
15 fodjumkv.o . . . 4  |-  ( ph  ->  M  e. Markov )
16 ismkvmap 7118 . . . . 5  |-  ( M  e. Markov  ->  ( M  e. Markov  <->  A. f  e.  ( 2o 
^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) ) )
1716ibi 175 . . . 4  |-  ( M  e. Markov  ->  A. f  e.  ( 2o  ^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) )
1815, 17syl 14 . . 3  |-  ( ph  ->  A. f  e.  ( 2o  ^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) )
191, 3, 15fodjuf 7109 . . 3  |-  ( ph  ->  P  e.  ( 2o 
^m  M ) )
2014, 18, 19rspcdva 2835 . 2  |-  ( ph  ->  ( -.  A. w  e.  M  ( P `  w )  =  1o 
->  E. w  e.  M  ( P `  w )  =  (/) ) )
211adantr 274 . . . 4  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  F : M -onto->
( A B )
)
22 simpr 109 . . . . 5  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. w  e.  M  ( P `  w )  =  (/) )
23 fveqeq2 5495 . . . . . 6  |-  ( w  =  v  ->  (
( P `  w
)  =  (/)  <->  ( P `  v )  =  (/) ) )
2423cbvrexv 2693 . . . . 5  |-  ( E. w  e.  M  ( P `  w )  =  (/)  <->  E. v  e.  M  ( P `  v )  =  (/) )
2522, 24sylib 121 . . . 4  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. v  e.  M  ( P `  v )  =  (/) )
2621, 3, 25fodjum 7110 . . 3  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. x  x  e.  A )
2726ex 114 . 2  |-  ( ph  ->  ( E. w  e.  M  ( P `  w )  =  (/)  ->  E. x  x  e.  A ) )
287, 20, 273syld 57 1  |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136    =/= wne 2336   A.wral 2444   E.wrex 2445   (/)c0 3409   ifcif 3520    |-> cmpt 4043   -onto->wfo 5186   ` cfv 5188  (class class class)co 5842   1oc1o 6377   2oc2o 6378    ^m cmap 6614   ⊔ cdju 7002  inlcinl 7010  Markovcmarkov 7115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-1o 6384  df-2o 6385  df-map 6616  df-dju 7003  df-inl 7012  df-inr 7013  df-markov 7116
This theorem is referenced by:  fodjumkv  7124
  Copyright terms: Public domain W3C validator