ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjumkvlemres Unicode version

Theorem fodjumkvlemres 7225
Description: Lemma for fodjumkv 7226. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjumkv.o  |-  ( ph  ->  M  e. Markov )
fodjumkv.fo  |-  ( ph  ->  F : M -onto-> ( A B ) )
fodjumkv.p  |-  P  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
Assertion
Ref Expression
fodjumkvlemres  |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
)
Distinct variable groups:    ph, y, z   
y, M, z    z, A    z, B    z, F    x, A, z    y, A   
y, F    y, P, z
Allowed substitution hints:    ph( x)    B( x, y)    P( x)    F( x)    M( x)

Proof of Theorem fodjumkvlemres
Dummy variables  v  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjumkv.fo . . . . . 6  |-  ( ph  ->  F : M -onto-> ( A B ) )
21adantr 276 . . . . 5  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  F : M -onto-> ( A B ) )
3 fodjumkv.p . . . . 5  |-  P  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
4 simpr 110 . . . . 5  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  A. w  e.  M  ( P `  w )  =  1o )
52, 3, 4fodju0 7213 . . . 4  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  A  =  (/) )
65ex 115 . . 3  |-  ( ph  ->  ( A. w  e.  M  ( P `  w )  =  1o 
->  A  =  (/) ) )
76necon3ad 2409 . 2  |-  ( ph  ->  ( A  =/=  (/)  ->  -.  A. w  e.  M  ( P `  w )  =  1o ) )
8 fveq1 5557 . . . . . . 7  |-  ( f  =  P  ->  (
f `  w )  =  ( P `  w ) )
98eqeq1d 2205 . . . . . 6  |-  ( f  =  P  ->  (
( f `  w
)  =  1o  <->  ( P `  w )  =  1o ) )
109ralbidv 2497 . . . . 5  |-  ( f  =  P  ->  ( A. w  e.  M  ( f `  w
)  =  1o  <->  A. w  e.  M  ( P `  w )  =  1o ) )
1110notbid 668 . . . 4  |-  ( f  =  P  ->  ( -.  A. w  e.  M  ( f `  w
)  =  1o  <->  -.  A. w  e.  M  ( P `  w )  =  1o ) )
128eqeq1d 2205 . . . . 5  |-  ( f  =  P  ->  (
( f `  w
)  =  (/)  <->  ( P `  w )  =  (/) ) )
1312rexbidv 2498 . . . 4  |-  ( f  =  P  ->  ( E. w  e.  M  ( f `  w
)  =  (/)  <->  E. w  e.  M  ( P `  w )  =  (/) ) )
1411, 13imbi12d 234 . . 3  |-  ( f  =  P  ->  (
( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) )  <->  ( -.  A. w  e.  M  ( P `  w )  =  1o  ->  E. w  e.  M  ( P `  w )  =  (/) ) ) )
15 fodjumkv.o . . . 4  |-  ( ph  ->  M  e. Markov )
16 ismkvmap 7220 . . . . 5  |-  ( M  e. Markov  ->  ( M  e. Markov  <->  A. f  e.  ( 2o 
^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) ) )
1716ibi 176 . . . 4  |-  ( M  e. Markov  ->  A. f  e.  ( 2o  ^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) )
1815, 17syl 14 . . 3  |-  ( ph  ->  A. f  e.  ( 2o  ^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) )
191, 3, 15fodjuf 7211 . . 3  |-  ( ph  ->  P  e.  ( 2o 
^m  M ) )
2014, 18, 19rspcdva 2873 . 2  |-  ( ph  ->  ( -.  A. w  e.  M  ( P `  w )  =  1o 
->  E. w  e.  M  ( P `  w )  =  (/) ) )
211adantr 276 . . . 4  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  F : M -onto->
( A B )
)
22 simpr 110 . . . . 5  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. w  e.  M  ( P `  w )  =  (/) )
23 fveqeq2 5567 . . . . . 6  |-  ( w  =  v  ->  (
( P `  w
)  =  (/)  <->  ( P `  v )  =  (/) ) )
2423cbvrexv 2730 . . . . 5  |-  ( E. w  e.  M  ( P `  w )  =  (/)  <->  E. v  e.  M  ( P `  v )  =  (/) )
2522, 24sylib 122 . . . 4  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. v  e.  M  ( P `  v )  =  (/) )
2621, 3, 25fodjum 7212 . . 3  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. x  x  e.  A )
2726ex 115 . 2  |-  ( ph  ->  ( E. w  e.  M  ( P `  w )  =  (/)  ->  E. x  x  e.  A ) )
287, 20, 273syld 57 1  |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476   (/)c0 3450   ifcif 3561    |-> cmpt 4094   -onto->wfo 5256   ` cfv 5258  (class class class)co 5922   1oc1o 6467   2oc2o 6468    ^m cmap 6707   ⊔ cdju 7103  inlcinl 7111  Markovcmarkov 7217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-1o 6474  df-2o 6475  df-map 6709  df-dju 7104  df-inl 7113  df-inr 7114  df-markov 7218
This theorem is referenced by:  fodjumkv  7226
  Copyright terms: Public domain W3C validator