ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjumkvlemres Unicode version

Theorem fodjumkvlemres 7033
Description: Lemma for fodjumkv 7034. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjumkv.o  |-  ( ph  ->  M  e. Markov )
fodjumkv.fo  |-  ( ph  ->  F : M -onto-> ( A B ) )
fodjumkv.p  |-  P  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
Assertion
Ref Expression
fodjumkvlemres  |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
)
Distinct variable groups:    ph, y, z   
y, M, z    z, A    z, B    z, F    x, A, z    y, A   
y, F    y, P, z
Allowed substitution hints:    ph( x)    B( x, y)    P( x)    F( x)    M( x)

Proof of Theorem fodjumkvlemres
Dummy variables  v  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjumkv.fo . . . . . 6  |-  ( ph  ->  F : M -onto-> ( A B ) )
21adantr 274 . . . . 5  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  F : M -onto-> ( A B ) )
3 fodjumkv.p . . . . 5  |-  P  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
4 simpr 109 . . . . 5  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  A. w  e.  M  ( P `  w )  =  1o )
52, 3, 4fodju0 7019 . . . 4  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  A  =  (/) )
65ex 114 . . 3  |-  ( ph  ->  ( A. w  e.  M  ( P `  w )  =  1o 
->  A  =  (/) ) )
76necon3ad 2350 . 2  |-  ( ph  ->  ( A  =/=  (/)  ->  -.  A. w  e.  M  ( P `  w )  =  1o ) )
8 fveq1 5420 . . . . . . 7  |-  ( f  =  P  ->  (
f `  w )  =  ( P `  w ) )
98eqeq1d 2148 . . . . . 6  |-  ( f  =  P  ->  (
( f `  w
)  =  1o  <->  ( P `  w )  =  1o ) )
109ralbidv 2437 . . . . 5  |-  ( f  =  P  ->  ( A. w  e.  M  ( f `  w
)  =  1o  <->  A. w  e.  M  ( P `  w )  =  1o ) )
1110notbid 656 . . . 4  |-  ( f  =  P  ->  ( -.  A. w  e.  M  ( f `  w
)  =  1o  <->  -.  A. w  e.  M  ( P `  w )  =  1o ) )
128eqeq1d 2148 . . . . 5  |-  ( f  =  P  ->  (
( f `  w
)  =  (/)  <->  ( P `  w )  =  (/) ) )
1312rexbidv 2438 . . . 4  |-  ( f  =  P  ->  ( E. w  e.  M  ( f `  w
)  =  (/)  <->  E. w  e.  M  ( P `  w )  =  (/) ) )
1411, 13imbi12d 233 . . 3  |-  ( f  =  P  ->  (
( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) )  <->  ( -.  A. w  e.  M  ( P `  w )  =  1o  ->  E. w  e.  M  ( P `  w )  =  (/) ) ) )
15 fodjumkv.o . . . 4  |-  ( ph  ->  M  e. Markov )
16 ismkvmap 7028 . . . . 5  |-  ( M  e. Markov  ->  ( M  e. Markov  <->  A. f  e.  ( 2o 
^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) ) )
1716ibi 175 . . . 4  |-  ( M  e. Markov  ->  A. f  e.  ( 2o  ^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) )
1815, 17syl 14 . . 3  |-  ( ph  ->  A. f  e.  ( 2o  ^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) )
191, 3, 15fodjuf 7017 . . 3  |-  ( ph  ->  P  e.  ( 2o 
^m  M ) )
2014, 18, 19rspcdva 2794 . 2  |-  ( ph  ->  ( -.  A. w  e.  M  ( P `  w )  =  1o 
->  E. w  e.  M  ( P `  w )  =  (/) ) )
211adantr 274 . . . 4  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  F : M -onto->
( A B )
)
22 simpr 109 . . . . 5  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. w  e.  M  ( P `  w )  =  (/) )
23 fveqeq2 5430 . . . . . 6  |-  ( w  =  v  ->  (
( P `  w
)  =  (/)  <->  ( P `  v )  =  (/) ) )
2423cbvrexv 2655 . . . . 5  |-  ( E. w  e.  M  ( P `  w )  =  (/)  <->  E. v  e.  M  ( P `  v )  =  (/) )
2522, 24sylib 121 . . . 4  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. v  e.  M  ( P `  v )  =  (/) )
2621, 3, 25fodjum 7018 . . 3  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. x  x  e.  A )
2726ex 114 . 2  |-  ( ph  ->  ( E. w  e.  M  ( P `  w )  =  (/)  ->  E. x  x  e.  A ) )
287, 20, 273syld 57 1  |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480    =/= wne 2308   A.wral 2416   E.wrex 2417   (/)c0 3363   ifcif 3474    |-> cmpt 3989   -onto->wfo 5121   ` cfv 5123  (class class class)co 5774   1oc1o 6306   2oc2o 6307    ^m cmap 6542   ⊔ cdju 6922  inlcinl 6930  Markovcmarkov 7025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-1o 6313  df-2o 6314  df-map 6544  df-dju 6923  df-inl 6932  df-inr 6933  df-markov 7026
This theorem is referenced by:  fodjumkv  7034
  Copyright terms: Public domain W3C validator