ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjumkvlemres Unicode version

Theorem fodjumkvlemres 7114
Description: Lemma for fodjumkv 7115. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjumkv.o  |-  ( ph  ->  M  e. Markov )
fodjumkv.fo  |-  ( ph  ->  F : M -onto-> ( A B ) )
fodjumkv.p  |-  P  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
Assertion
Ref Expression
fodjumkvlemres  |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
)
Distinct variable groups:    ph, y, z   
y, M, z    z, A    z, B    z, F    x, A, z    y, A   
y, F    y, P, z
Allowed substitution hints:    ph( x)    B( x, y)    P( x)    F( x)    M( x)

Proof of Theorem fodjumkvlemres
Dummy variables  v  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjumkv.fo . . . . . 6  |-  ( ph  ->  F : M -onto-> ( A B ) )
21adantr 274 . . . . 5  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  F : M -onto-> ( A B ) )
3 fodjumkv.p . . . . 5  |-  P  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
4 simpr 109 . . . . 5  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  A. w  e.  M  ( P `  w )  =  1o )
52, 3, 4fodju0 7102 . . . 4  |-  ( (
ph  /\  A. w  e.  M  ( P `  w )  =  1o )  ->  A  =  (/) )
65ex 114 . . 3  |-  ( ph  ->  ( A. w  e.  M  ( P `  w )  =  1o 
->  A  =  (/) ) )
76necon3ad 2376 . 2  |-  ( ph  ->  ( A  =/=  (/)  ->  -.  A. w  e.  M  ( P `  w )  =  1o ) )
8 fveq1 5479 . . . . . . 7  |-  ( f  =  P  ->  (
f `  w )  =  ( P `  w ) )
98eqeq1d 2173 . . . . . 6  |-  ( f  =  P  ->  (
( f `  w
)  =  1o  <->  ( P `  w )  =  1o ) )
109ralbidv 2464 . . . . 5  |-  ( f  =  P  ->  ( A. w  e.  M  ( f `  w
)  =  1o  <->  A. w  e.  M  ( P `  w )  =  1o ) )
1110notbid 657 . . . 4  |-  ( f  =  P  ->  ( -.  A. w  e.  M  ( f `  w
)  =  1o  <->  -.  A. w  e.  M  ( P `  w )  =  1o ) )
128eqeq1d 2173 . . . . 5  |-  ( f  =  P  ->  (
( f `  w
)  =  (/)  <->  ( P `  w )  =  (/) ) )
1312rexbidv 2465 . . . 4  |-  ( f  =  P  ->  ( E. w  e.  M  ( f `  w
)  =  (/)  <->  E. w  e.  M  ( P `  w )  =  (/) ) )
1411, 13imbi12d 233 . . 3  |-  ( f  =  P  ->  (
( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) )  <->  ( -.  A. w  e.  M  ( P `  w )  =  1o  ->  E. w  e.  M  ( P `  w )  =  (/) ) ) )
15 fodjumkv.o . . . 4  |-  ( ph  ->  M  e. Markov )
16 ismkvmap 7109 . . . . 5  |-  ( M  e. Markov  ->  ( M  e. Markov  <->  A. f  e.  ( 2o 
^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) ) )
1716ibi 175 . . . 4  |-  ( M  e. Markov  ->  A. f  e.  ( 2o  ^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) )
1815, 17syl 14 . . 3  |-  ( ph  ->  A. f  e.  ( 2o  ^m  M ) ( -.  A. w  e.  M  ( f `  w )  =  1o 
->  E. w  e.  M  ( f `  w
)  =  (/) ) )
191, 3, 15fodjuf 7100 . . 3  |-  ( ph  ->  P  e.  ( 2o 
^m  M ) )
2014, 18, 19rspcdva 2830 . 2  |-  ( ph  ->  ( -.  A. w  e.  M  ( P `  w )  =  1o 
->  E. w  e.  M  ( P `  w )  =  (/) ) )
211adantr 274 . . . 4  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  F : M -onto->
( A B )
)
22 simpr 109 . . . . 5  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. w  e.  M  ( P `  w )  =  (/) )
23 fveqeq2 5489 . . . . . 6  |-  ( w  =  v  ->  (
( P `  w
)  =  (/)  <->  ( P `  v )  =  (/) ) )
2423cbvrexv 2690 . . . . 5  |-  ( E. w  e.  M  ( P `  w )  =  (/)  <->  E. v  e.  M  ( P `  v )  =  (/) )
2522, 24sylib 121 . . . 4  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. v  e.  M  ( P `  v )  =  (/) )
2621, 3, 25fodjum 7101 . . 3  |-  ( (
ph  /\  E. w  e.  M  ( P `  w )  =  (/) )  ->  E. x  x  e.  A )
2726ex 114 . 2  |-  ( ph  ->  ( E. w  e.  M  ( P `  w )  =  (/)  ->  E. x  x  e.  A ) )
287, 20, 273syld 57 1  |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1342   E.wex 1479    e. wcel 2135    =/= wne 2334   A.wral 2442   E.wrex 2443   (/)c0 3404   ifcif 3515    |-> cmpt 4037   -onto->wfo 5180   ` cfv 5182  (class class class)co 5836   1oc1o 6368   2oc2o 6369    ^m cmap 6605   ⊔ cdju 6993  inlcinl 7001  Markovcmarkov 7106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-1o 6375  df-2o 6376  df-map 6607  df-dju 6994  df-inl 7003  df-inr 7004  df-markov 7107
This theorem is referenced by:  fodjumkv  7115
  Copyright terms: Public domain W3C validator